期刊文献+

改进遗传算法优化非线性规划问题 被引量:9

Improved Genetic Algorithm to Optimize the Nonlinear Programming Problem
原文传递
导出
摘要 针对遗传算法在处理优化问题上的独特优势,主要研究遗传算法的改进,并将其应用于优化非线性规划问题.在进化策略上,采用群体精英保留方式,将适应度值低的个体进行变异;交叉算子采用按决策变量分段交叉方式,提高进化速度;在优化有约束非线性规划问题时,引入算子修正法,对非可行个体进行改善.MATLAB仿真实验表明,方法是一种有效的、可靠的、方便的方法. For genetic algorithm has the unique advantage in dealing with optimization problems, this paper's main research is on the iraprovement of genetic algorithm and its application in nonlinear programming problems. Ia the evolutionary strategy, the elite group keeping method is used and individuals with low fitness values are mutated; Crossover operator uses the mode of crossover according to decision variables' segments to speed up evolution. In optimizing the nonlinear programming problem with constraints, the correction operator method was introduced to improve the feasible degree of infeasible individuals. MATLAB simulation results proved the validity of the proposed method, and it is an effective, reliable and convenient method.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第7期117-125,共9页 Mathematics in Practice and Theory
基金 国家自然科学基金(31071331)
关键词 非线性规划问题 改进遗传算法 算子修正法 improved genetic algorithm nonlinear programming problem correction oper- ator method
  • 相关文献

参考文献20

  • 1运筹学编写组,运筹学(第三版)[M].北京:清华大学出版社,2005. 被引量:1
  • 2应玖茜,魏权龄.规划及其理论[M].北京中国人民大学出版社,1994. 被引量:1
  • 3Bazarra M S,Shetty L M. Nonlinear programming:Theory and algorithms[M]. New York:John Wiley & Sons,1979. 被引量:1
  • 4毕义明,李景文,李国民,刘雪梅.非线性规划问题求解的遗传算法设计与实现[J].系统工程与电子技术,2000,22(2):82-83. 被引量:4
  • 5梁昔明,朱灿,颜东煌.基于物种选择的遗传算法求解约束非线性规划问题[J].中南大学学报(自然科学版),2009,40(1):185-189. 被引量:11
  • 6Holland J H.Adaptation in Natural and ArtificialSystEms[M].USA:Univ.of Michigan,1975. 被引量:1
  • 7Hansen J V. Genetic search methods in air traffic control[J]. Computers and Operations Research, 2004, 31(3): 445-459. 被引量:1
  • 8Saleh H A, Chelouah R. The design of the global navigation satellite system surveying networks using genetic algorithms[J]. Engineering Applications of Artificial Intelligence, 2004, 17(1): 111-122. 被引量:1
  • 9uidette H, Youlal H. Fuzzy dynamic path planning using genetic algorithms[J]. Electronics Letters, 2000, 36(4): 374-376. 被引量:1
  • 10Lyer, Srikanth K, Saxena, et al. Improved genetic algorithm for the permutation flowshop scheduling problem[J]. Computer and Operations Research, 2004, 31(4): 593-606. 被引量:1

二级参考文献66

共引文献92

同被引文献82

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部