摘要
由于缓坡方程计算量大和其本身的缓坡假定而在实际应用中受到了限制,故对斯托克斯波在非平整海底(适用于缓坡和陡坡地形)上传播的Liu和Dingemans的三阶演化方程进行抛物逼近,得到一个新的非线性抛物型方程,它能够包含同类方程未曾考虑的二阶长波效应.通过数值计算结果与Berkhoff等人的经典实验数据的比较,证明所提出的抛物型模型理论具有较高的精度。
Considering the limitation of mild- slope equation, requiring a computational effort and the mild- slope assumption, in practical engineering, a new nonlinear paraboic equation including the second-order long-waves ignored in the previous like equation is obtained by way of the paraboic approximation on Liu and ixngemans's thirdorder evolution equation for Stokes waves propagating over uneven bottom applicable to mild and abrupt topography.The model theory can provide more accurate predictions by comparison of the numerical medel results with the classic experimental data of Berkhoff et al.
出处
《海洋学报》
CAS
CSCD
北大核心
2000年第4期101-106,共6页
基金
国家教委博士点基金!9405623
国家高性能计算基金!96103
关键词
弱非线性斯托克斯波
非平整海底
抛物型方程
Weakly nonlinear Stokes waves, uneven bottom, second-order long-waves, nonlinear parabolic equation, the shoal experiment