期刊文献+

基于压缩感知的信号重构 被引量:4

Signal reconstruction based on compressive sensing
下载PDF
导出
摘要 压缩感知是针对稀疏或可压缩信号,在采样的同时即可对信号数据进行适当压缩的新理论,采用该理论,可以仅需少量信号的观测值来实现精确重构信号。文中概述了CS理论框架及关键技术问题,介绍了信号稀疏表示、观测矩阵和重构算法。最后仿真实现了基于压缩感知的信号重构,并对正交匹配追踪(OMP)重构算法性能作了分析。 Compressive sensing (CS)is a novel signal sampling theory under the condition that the signal is sparse or compressible.It has the ability of compressing a signal during the process of sampling.Using compressive sensing theory,one can reconstruct sparse or compressible signals accurately from a very limited number of measurements. This paper surveys the theoretical framework and the key technical problems of compressed sensing and introduces signal sparse representation, measurement matrix and reconstruction algorithms. In the end, realizes signal reconstruction and analyses the performances of Orthogonal Matching Pursuit(OMP)reconstruction algorithms.
出处 《电子设计工程》 2013年第7期34-36,40,共4页 Electronic Design Engineering
基金 江苏科技大学本科生创新计划专项经费资助(103022005)
关键词 压缩感知 稀疏性 信号重构 正交匹配追踪 compressed sensing sparsity signal reconstruction OMP
  • 相关文献

参考文献6

  • 1Candes E. Compressive sampling proceedings of the international congress of mathematicians[C]. Madrid,Spain, 2006(3):1433-1452. 被引量:1
  • 2Candes E,Romberg J,Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006,52 (2):489-509. 被引量:1
  • 3Candes E J,Tao T. Near optimal signal recovery from random projections: universal encoding strategies[J]. IEEE Trans.Info. Theory, 2006,52 (12) :5406-5425. 被引量:1
  • 4Donoho D L. Compressed sensing [J]. IEEE Trans. on Information Theory,2006,52(4): 1289-1306. 被引量:1
  • 5刘亚新,赵瑞珍,胡绍海,姜春晖.用于压缩感知信号重建的正则化自适应匹配追踪算法[J].电子与信息学报,2010,32(11):2713-2717. 被引量:70
  • 6Tropp J,Gilbert A. Signal recovery from random measurements via orthogonal matching pursuit[J]. Transactions on Information Theory, 2007,53 (12) : 4655-4666. 被引量:1

二级参考文献1

共引文献69

同被引文献36

  • 1尹忠科,解梅,王建英.基于稀疏分解的图像去噪[J].电子科技大学学报,2006,35(6):876-878. 被引量:25
  • 2Elad M. Sparse and Redundant Representations:From Theory to Applications in Signal and Image Processing[M].Berlin:Springer Vedag,2010. 被引量:1
  • 3Mallat S G,Zhang Z. Matching pursuit with time-frequency dictionaries[J].{H}IEEE Transactions on Signal Processing,1993,(12):3397-3745. 被引量:1
  • 4Tropp J A,Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J].{H}IEEE Transactions on Information Theory,2007,(12):4655-4666. 被引量:1
  • 5Chen S S,Donoho D L,Saunders M A. Atomic decomposition by basis pursuit[J].{H}SIAM REVIEW,2001,(1):129-159. 被引量:1
  • 6Elad M,Aharon M. Image denoising via sparse and redundant representations over learned dictionaries[J].{H}IEEE Transactions on Image Processing,2006,(12):3736-3745. 被引量:1
  • 7Heijmans H J A M,Goutsias J. Nonlinear mnltiresolution signal decomposition schemes-Part Ⅱ morphological wavelet[J].{H}IEEE Transactions on Image Processing,2000,(11):1897-1913. 被引量:1
  • 8MITOLA J. Cognitive Radio : An Integrated Agent Architecture for Software Defined Radio [ D]. Sweden : KTH Royal Institute of Technology Stockholm, 2000. 被引量:1
  • 9HAYKIN S. Cognitive Radio: Brain-Empowered Wireless Communications [ J ]. IEEE Journal on Selected Areas in Communications, 2005, 23 (2) : 201-220. 被引量:1
  • 10DONHO D L. Compressed Sensing [ J]. IEEE Transactions on Information Theory, 2006, 52(4) : 1289-1306. 被引量:1

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部