期刊文献+

基于稀疏表示的高噪声人脸识别及算法优化 被引量:11

Dense noise face recognition based on sparse representation and algorithm optimization
下载PDF
导出
摘要 为提高基于稀疏表示人脸识别的速度和抗噪性能,研究了交叉花束(CAB)模型及压缩感知重构算法。针对重构算法中的大矩阵求逆,提出快速正交匹配追踪(FOMP)算法,可将运算量较高的矩阵求逆运算转变为轻量级向量矩阵运算。为增加高噪声图片的有效信息量,提出几种实用且有效的方法,并通过实验验证这些方法都能提高高噪声人脸识别率,可识别的噪声比例提高到75%,具有一定的实用价值。 To improve the speed and anti-noise performance of face recognition based on sparse representation, the Cross- And-Bouquet (CAB) model and Compressed Sensing (CS) reconstruction algorithm were studied. Concerning the large matrix inversion of reconstruction algorithm, a Fast Orthogonal Matching Pursuit (FOMP) algorithm was proposed. The proposed algorithm could convert the high complexity operations of matrix inversion into the lightweight operation of vector-matrix computation. To increase the amount of effective information in dense noise pictures, several practical and efficient methods were put forward. The experimental results verify that these methods can effectively improve the face recognition rate in dense noise cases, and identifiable noise ratio can reach up to 75%. These methods are of oractical values.
出处 《计算机应用》 CSCD 北大核心 2012年第8期2313-2315,2319,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60870010 61065003)
关键词 压缩感知 稀疏表示 人脸识别 贪婪匹配追踪算法 过完备字典 Compressed Sensing (CS) sparse representation face recognition Orthogonal Matching Pursuit (OMP)algorithm overcomplete dictionary
  • 相关文献

参考文献19

  • 1戴琼海,付长军,季向阳.压缩感知研究[J].计算机学报,2011,34(3):425-434. 被引量:214
  • 2李树涛,魏丹.压缩传感综述[J].自动化学报,2009,35(11):1369-1377. 被引量:204
  • 3石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:709
  • 4YANG A Y, ZHOU Z, MA Y, et al. Towards a robust face recognition system using compressive sensing[C]// Proceedings of Interspeech: 11th Annual Conference of the International Speech Communication Association. Makuhari, Chiba:[s.n.], 2010: 2250-2253. 被引量:1
  • 5WRIGHT J, GANESH A, YANG A Y, et al. Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227. 被引量:1
  • 6TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Transactions on Information Theory, 2007, 53(12): 4655-4665. 被引量:1
  • 7SHA W.Orthogonal matching pursuit algorithm for compressive sensing [CP/OL].[2011-09-01]. http://www.eee.hku.hk/~wsha/Freecode/freecode.htm. 被引量:1
  • 8KARABULUT G Z,MOURA L,PANARIO D,et al. Flexible tree- search based orthogonal matching pursuit algorithm[C] // ICASSP '05: IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway: IEEE, 2005:673-676. 被引量:1
  • 9NEEDELL D, VERSHYNIN R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[J].IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 310-316. 被引量:1
  • 10刘亚新,赵瑞珍,胡绍海,姜春晖.用于压缩感知信号重建的正则化自适应匹配追踪算法[J].电子与信息学报,2010,32(11):2713-2717. 被引量:70

二级参考文献201

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:70
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121. 被引量:1
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383. 被引量:1
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998. 被引量:1
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999. 被引量:1
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664. 被引量:1
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501. 被引量:1
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91. 被引量:1
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09. 被引量:1
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415. 被引量:1

共引文献1133

同被引文献140

  • 1王海涛,刘俊,王阳生.自商图像[J].计算机工程,2005,31(18):178-179. 被引量:10
  • 2李武军,王崇骏,张炜,陈世福.人脸识别研究综述[J].模式识别与人工智能,2006,19(1):58-66. 被引量:107
  • 3张志伟,杨帆,夏克文,杨瑞霞.基于小波变换和NMF的人脸识别方法的研究[J].计算机工程,2007,33(6):176-178. 被引量:8
  • 4Richard0D,PeterEH,DavidGS.模式分类[M].李宏东,姚天翔译.北京:机械工业出版社,2003. 被引量:1
  • 5DUDA R O, HART P E, STORK D G. Pattern classification [ M]. New York: John Wiley & Sons, 2000. 被引量:1
  • 6BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. Fisheffaces: Recognition using class specific linear projection [ J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 1997, 19(7) : 711 - 720. 被引量:1
  • 7LI H F, JIANG T, ZHANG K S. Efficient and robust feature extrac- tion by maximum margin criterion [ J]. IEEE Transactions on Neural Networks, 2006, 17(1) : 1157 - 1165. 被引量:1
  • 8HE X F, DENG C, YAN S C, et al. Neighborhood preserving embed- ding[ C]//IEEE International Conference on Computer Vision. Pis- cataway: IEEE, 2005:1208 - 1213. 被引量:1
  • 9HE X F, YAN S C, HU Y X, et al. Face recognition using Lapla- cianfaces[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 (3) : 328 - 340. 被引量:1
  • 10Q1AO L, CHEN S, TAN X, Sparsity preserving projections with ap- plications to face recognition[J]. Pattern Recognition, 2010, 43 (1): 331-341. 被引量:1

引证文献11

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部