摘要
研究了受轴向周期力作用的各向同性简支柱的动力学稳定性· 假定粘弹性材料满足Lea derman非线性本构关系· 导出运动方程为非线性偏微分_积分方程 ,并利用Galerkin方法简化为非线性微分_积分方程· 应用平均法进行了稳定性分析 ,并用数值结果进行验证· 数值结果还表明系统可能存在混沌运动·
The dynamical stability of a homogeneous, simple supported column, subjected to a periodic axial force, is investigated. The viscoelastic material is assumed to obey the Leaderman nonlinear constitutive ralation. The equation of motion was derived as a nonlinear integro_partial_differential equation, and was simplified into a nonlinear integro_differential equation by the Galerkin method. The averaging method was employed to carry out the stability analysis. Numerical results are presented to compare with the analytical ones. Numerical results also indicate that chaotic motion appears.
出处
《应用数学和力学》
EI
CSCD
北大核心
2000年第9期890-896,共7页
Applied Mathematics and Mechanics
基金
国家自然科学基金资助资助!(1972 70 2 7)
中国博士后科学基金资助
上海科技发展基金资助!(98JC140 32
98SHB1417)