期刊文献+

粘弹性复合材料层合板壳的动力稳定性分析 被引量:2

Dynamic instability of viscoelastic cross-ply laminated plates and circular cylindrical shells
下载PDF
导出
摘要 分析面内周期激励下粘弹性层合平板以及轴向周期荷载作用下粘弹性层合圆柱壳的动力稳定性。设粘弹性复合材料服从Boltzmann积分型本构关系,其松弛模量由Prony-Dirichlet级数表示,基于薄板与薄壳理论,分别得到对称正交铺设层合板与层合圆柱壳的微分-积分型动力学方程,并应用谐波平衡法直接求解,忽略积分运算所产生的衰减项,导出确定动力不稳定区域边界的特征方程。分析结果表明,主要动力不稳定区域的缩小与材料的粘性参数以及结构横向振动的基频密切相关。 In this paper, the dynamic instability for viscoelastic laminated plates subjected to in-plane harmonic excitations, and cylindrical shells under axially harmonic loads are investigated. Boltzmann hereditary constitutive relation is used to model the viscoelastic behavior of fiber-reinforced composite materials and the relaxation modulus are expressed in the form of Prony-Dirichlet series. The integro-differential Mathieu equation of motion is obtained on the basis of the theory of thin plates and thin shells. An approach is developed to determine the boundaries of principal dynamic instable regions by applying directly harmonic balance method to solve the integro-differential equations of motion, meanwhile the time-dependent decay items arisen from the integration manipulation is neglected. This approximate method, that is shown to be very efficient, is then employed to analyze the dynamic stabilities of viscoelastic cross-ply plates and cylindrical shells. The results reveal that the shrink of principal dynamic unstable region is dependent on the magnitude of viscous parameters of materials and the natural frequencies of corresponding elastic laminated structures.
出处 《振动工程学报》 EI CSCD 北大核心 2006年第4期459-464,共6页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(10572049) 湖南省自然科学基金资助项目(05JJ30008)
关键词 粘弹性 层合板 层合圆柱壳 动力稳定 谐波平衡 viscoelasticity laminated plate laminated cylindrical shell dynamic stability harmonic balance method
  • 相关文献

参考文献10

  • 1Cederbaum G,Mond M.Stability properties of viscoelastic column under a periodic force[J].Journal ofApplied Mechanics ASME,1992,59:16-19. 被引量:1
  • 2Tae-WooKim,Ji-Hwan Kim.Parametric instability of a cross-ply laminated beam with viscoelastic proper-ties under a periodic force[J].Composite Structures,2001,51:205-209. 被引量:1
  • 3Matyash V L.Dynamic stability of a hinged viscoelastic bar[J].Mechanics of Polymers.1967,2:293-300. 被引量:1
  • 4陈立群,程昌钧.非线性粘弹性柱的稳定性和混沌运动[J].应用数学和力学,2000,21(9):890-896. 被引量:30
  • 5Aboudi J,Cederbaum G.Dynamic stability analysis of viscoelastic plates by Lyapunov exponents[J].Journal of Sound and Vibration,1990,139(3):459-467. 被引量:1
  • 6Cederbaum G,Aboudi J,Elishakoff I.Dynamic instability of shear-deformable vicoelastic laminated platesby Lyapunov exponents[J].International Journal of Solids and Structures,1991,28 (3):317-327. 被引量:1
  • 7程昌钧,范晓军.黏弹性环形板的临界载荷及动力稳定性[J].力学学报,2001,33(3):365-376. 被引量:9
  • 8彭凡,傅衣铭.粘弹性结构动力稳定性分析的谐波平衡法[J].力学季刊,2003,24(4):541-545. 被引量:1
  • 9Talreja R,Kumar R S.A continuum damage model for linear viscoelastic composite materials[J].Mechanics of Materials,2003,35:139-154. 被引量:1
  • 10杨挺青著..粘弹性力学[M].武汉:华中理工大学出版社,1990:267.

二级参考文献21

  • 1朱媛媛,程昌钧.粘弹性矩形板的稳定性分析[J].固体力学学报,1996,17(3):257-262. 被引量:9
  • 2Matyash V I. Dynamic stability of hinged viscoelastic bar[J]. Mech Poly, 1964, 2(3) : 293-300. 被引量:1
  • 3Cederbaum G, Mond M. Stability properties of a viscoelastic column under a period force[J]. J Appl Mech, 1992, 59(1) : 16-19. 被引量:1
  • 4Cederbaum G. Parametric excitation of viscoelastic plates[J]. Mech Struct & Mach, 992, 20(1) : 37-51. 被引量:1
  • 5Potapov V D, Marasanov A Y. The investigation of the stability of elastic and viscoelastic rods under a stochastic excitation[J]. Int J Solids Struct, 1997, 34(9) : 1367-1377. 被引量:1
  • 6Suire G, Cederbaum G. Periodic and chaotic behavior of viscoelastic nonlinear(elastica) bars under harmonic excitations[J]. Int J Mech Sci, 1995, 37(5): 753-772. 被引量:1
  • 7程昌钧,力学学报,1998年,30卷,6期,690页 被引量:1
  • 8Zhang Nenghui,Proc 3rd Int Conf Nonlinear Mech,1998年,432页 被引量:1
  • 9Zhu Yanyan,Proc 3rd Int Conf Nonlinear Mech,1998年,445页 被引量:1
  • 10陆启韶,常微分方程的定性方法与分叉,1989年 被引量:1

共引文献34

同被引文献21

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部