期刊文献+

Vasicek利率模型下带有负债的投资组合优化 被引量:2

Portfolio Optimization with Liability under the Vasicek Model
下载PDF
导出
摘要 研究随机利率模型下负债型投资组合优化问题的最优投资策略,其中假设无风险利率是遵循Vasicek利率模型的随机过程,而负债服从带漂移的布朗运动且与股票价格和利率存在相关性.应用动态规划原理得到满足值函数的哈密尔顿-雅可比-贝尔曼(HJB)方程,并进一步应用Leg-endre变换得到值函数的对偶方程,并研究了幂效用和指数效用函数下的最优投资策略.最后,应用分离变量和变量替换方法得到幂效用和指数效用函数下最优投资策略的显示表达式,并给出算例分析了市场参数对最优投资策略的影响. This paper is concerned with a portfolio optimization problem with liability and stochastic interest rate model, where risk-free interest rate is assumed to follow the Vasicek interest rate model, while liability process follows Brownian motion with drift. Moreover, it was assumed that liability dynamic is correlated with stock price and interest rate. Dynamic programming principle was applied to obtain HamiltonJacobi-Bellman(HJB) equation for the value function and further Legendre transform was used to derive its dual equation. Power utility and exponential utility function were chosen for the analysis. Finally, the closed-form solutions to the optimal investment strategies were obtained by using separate variable and variable change technique and numerical examples were presented to illustrate the impact of market parameters on the optimal policies.
作者 常浩 荣喜民
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2013年第3期465-471,共7页 Journal of Shanghai Jiaotong University
基金 教育部人文社会科学研究青年基金(11YJC790006) 天津市高等学校科技发展基金(20100821) 天津市自然科学基金(09JCYBJC01800)
关键词 VASICEK利率模型 负债过程 动态规划原理 LEGENDRE变换 动态投资组合 Key words. Vasicek interest rate model liability process dynamic programming principle Legendretransform~ dynamic portfolio selection
  • 相关文献

参考文献8

  • 1Decamps M, Schepper A D, Goovaerts M. A path in-tegral approach to asset-liability management[J].Physica A: Statistical Mechanics and Its Applications, 2006, 363 (2): 404-416. 被引量:1
  • 2Chiu M C, Li D. Asset and liability management un- der a continuous-time mean-variance optimization framework[J]. Insurance: Mathematics and Econom- ics, 2006, 39 (3): 330-355. 被引量:1
  • 3Leippold M, Trojani F, Vanini P. A geometric ap- proach to multi-period mean-variance optimization of assets and liabilities[J]. Journal of Economies Dynam- ics and Control, 2004, 28(6):1079-1113. 被引量:1
  • 4Xie S X, Li Z F, Wang S Y. Continuous-time portfoli- o selection with liability: Mean-variance model and sto- chastic LQ approach[J]. Insurance: Mathematics and Economics, 2008, 42(3): 943-953. 被引量:1
  • 5Korn R, Kraft H. A stochastic control approach to portfolio problems with stochastic interest rates [J]. SIAM Journal of Control and optimization, 2001, 40 (4) : 1250-1269. 被引量:1
  • 6Gao J W. Stochastic optimal control of DC pension funds [ J ]. Insurance: Mathematics and Economics, 2008,42(3) : 1159-1164. 被引量:1
  • 7Josa-Fombellida R, Rine6n-Zapatero J P. Optimal as- set allocation for aggregated defined benefit pension funds with stochastic interest rates[J]. European Jour- nal of Operational Research, 2 010, 2 01 ( 1 ) : 211-2 21. 被引量:1
  • 8Noh E J, Kim J H. An optimal portfolio model with stochastic volatility and stochastic interest rate [J]. Journal of Mathematical Analysis and Applications, 2011, 375(2): 510-522. 被引量:1

同被引文献10

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部