期刊文献+

锂离子电池碳包覆锡负极性能研究 被引量:1

Properties of Carbon Coated Tin Negative Electrode for Lithium-Ion Battery
下载PDF
导出
摘要 应用水热法分解葡萄糖制作锂离子电池碳包覆锡负极.充放电测试表明,添加5%(by mass)乙炔黑导电剂的该电极初始放电比容量达967 mAh.g-1,经50周循环其放电比容量仍保持362 mAh.g-1,远高于锡电极的比容量(50周循环,166 mAh.g-1).碳包覆可防止锡粉团聚,降低锡的不可逆容量损失.而添加乙炔黑可降低碳包覆电极与电解液间的交流阻抗,改善电极内部锂离子及电子的传导通道,从而也提高了该电极的初始放电比容量. Carbon coated tin powder was prepared by decomposing glucose applying a hydrothermal method, and was further used as the active material for negative electrode of lithium secondary battery. Charge-discharge tests show that the carbon coated tin electrode with the addition of 5% (by mass) acetylene black as a conductive agent could obtain an initial discharge capacity of 967 mAh·g^-1 and a discharge capacity of 362 mAh. gl after 50 cycles, which is much higher than that of tin electrode (166 mAh·g^-1 after 50 cycles). The coated carbon hinders the agglomeration of tin powder and reduces the irreversible capacity loss of tin. The addition of acetylene black could reduce the impedance between the electrode and the electrolyte, therefore, improve the transfer property of lithium ions and the electrons within the electrode, which contribute to the higher initial discharge capacity.
出处 《电化学》 CAS CSCD 北大核心 2013年第2期169-173,共5页 Journal of Electrochemistry
关键词 锂离子电池 碳包覆 锡负极 循环性能 lithium-ion battery carbon coating tin negative electrode cycle performance
  • 相关文献

参考文献10

  • 1Zhang T, Fu L J, Gao J, et al. Nanosized tin anode prepared by laser-induced vapor deposition for lithium ion battery [J]. Journal of Power Sources, 2007, 174(2): 770-773. 被引量:1
  • 2Bazin L, Mitra S, Taberna P L, et al. High rate capability pure Sn-based nano-architectured electrode assembly for rechargeable lithium batteries [J]. Journal of Power Sources, 2009, 188(2): 578-582. 被引量:1
  • 3Liu S, Li Q, Chen Y X, et al. Carbon-coated copper-tin alloy anode material for lithium ion batteries [J]. Journal of Alloys and Compounds, 2009, 478(1/2): 694-698. 被引量:1
  • 4Zou L, Gan L, Kang F Y, et al. Sn/C non-woven film prepared by electrospinning as anode materials for lithium ion batteries [J]. Journal of Power Sources, 2010, 195(4): 1216-1220. 被引量:1
  • 5Yu H W, Hu S J, Hou X H, et al. Electrochemical performance of tin-aluminum thin film anode for lithium ion battery [M]// Gu Z W, Han Y F, Pan F H, et al. Materials Science Forum, Switzerland, Trans Tech Publications Ltd, 2009, 610-613: 467-471. 被引量:1
  • 6Li J, Le D B, Ferguson P P, et al. Lithium polyacrylate as a binder for tin-cobalt-carbon negative electrodes in lithium-ion batteries [J]. Electrochimica Acta, 2010, 55(8): 2991-2995. 被引量:1
  • 7Song S W, Baek S W. Surface layer formation on Sn anode: ATR FTIR spectroscopic characterization [J]. Electrochimica Acta, 2009, 54(4): 1312-1318. 被引量:1
  • 8Li H Q, Zhou H S. Enhancing the performances of Li-ion batteries by carbon-coating: Present and future [J]. Chemical Communications, 2012, 48(9): 1201-1217. 被引量:1
  • 9Wang Z, Tian W H, Liu X H, et al. Synthesis and electrochemical performances of amorphous carbon-coated Sn-Sb particles as anode material for lithium-ion batteries [J]. Journal of Solid State Chemistry, 2007, 180(12): 3360-3365. 被引量:1
  • 10Du Z J, Zhang S C, Jiang T, et al. Preparation and characterization of three-dimensional tin thin-film anode with good cycle performance [J]. Electrochimica Acta, 2010, 55(10): 3537-3541. 被引量:1

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部