期刊文献+

纳米阵列和纳米晶薄膜锡电极性质的电化学研究 被引量:1

Electrochemical Study of Nano-Array and Nano-Crystalline Tin Anode
原文传递
导出
摘要 采用氧化铝为模板的电化学沉积方法制备锡纳米阵列电极,用扫描电镜和X射线衍射仪表征电极微观形貌结构,并采用循环伏安和交流阻抗研究电极嵌锂过程,同时研究纳米晶锡薄膜电极和轧制锡箔电极。结果表明:纳米阵列电极与锡薄膜、锡箔电极具有不同交流阻抗谱特征,锡纳米阵列电极在中频区出现双电层阻抗,与其电解液/电极接触面积较大有关;不同微观结构形态下锡电极的电化学反应表面阻抗相差大于一个数量级,锡纳米阵列的表面膜电阻为19.8~14.6?·cm2;锡纳米阵列电极上的锂离子扩散速率最大,0.2V嵌锂电位下扩散系数为10-10cm2·s-1;采用纳米阵列结构使电极具有很高电的化学活性。 Tin nano-array electrodes were assembled by electrochemical deposition using alumina anodic oxide (AAO) as templates. Morphology and structure of the tin electrodes were characterized by SEM and XRD. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were applied to reveal the electrochemical performance of the electrodes used as anode of Li-ion battery. Compared to electrodes of tin film and tin foil from rolling, the electrodes of tin nano-arrays are very active. The EIS spectra of tin nano-array electrodes show different characters from electrodes of tin film and tin foil. A medium-frequency area has been found which is ascribed to the large charge transfer area across the electrode/electrolyte interface. The lithium ion transporting in solid-electrolyte ion surface layer are controlled by structure of electrodes. The surface resistances for nano-arrays observed from high frequency ace are between 19.8 and 14.6Ω.cm2. The highest diffusion coefficient is 10^-10cm2·s^-1 for nano-array electrode, at potential of 0.2 V. The nano-array structure can lead to high electrochemical activity of the electrodes.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2012年第9期1628-1632,共5页 Rare Metal Materials and Engineering
基金 云南自然科学基金项目(2007B185M)
关键词 纳米阵列 锂离子电池 循环伏安 交流阻抗 tin nano-array lithium-ion battery cyclic voltammetry EIS
  • 相关文献

参考文献15

二级参考文献32

共引文献27

同被引文献19

  • 1Li Shasha(厉沙沙),Li Jiongli(李炯利),Li Wei(李伟)et al. 稀有金属材料与工 程[J], 2012,4i(S2): 761. 被引量:2
  • 2Hughes Q Smith S, Pande C et al. Scripta Metallurgical, 1986,20(1):93. 被引量:1
  • 3Wang Y,Qiao G, Liu X et al. Materials Letters[J], 1993,17(3): 152. 被引量:1
  • 4Karch J, Birringer R, Gleiter H. Nature[J]} 1987, 330: 556. 被引量:1
  • 5Fecht H. Nanophase Materials by Mechanical Attrition'. Synthesis and Characterization[M]. Berlin: Springer, 1994: 125. 被引量:1
  • 6McMahon Q Erb U. J Mater Sci Lett[i], 1989, 8(7): 865. 被引量:1
  • 7Afflnito J, Parsons R. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, andFilms[J].1984, 2(3): 1275. 被引量:1
  • 8McCandlish L E, Kear B H,Kim B K. Google Patents US5230729 A[P] 1993. 被引量:1
  • 9Goshchitskii B, Kirk M, Sagaradze V et al. Nanostruct Mater [J], 1997, 9(1): 189. 被引量:1
  • 10Grant P. Progress in Materials Science[J], 1995, 39(4): 497. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部