期刊文献+

Schauder不动点定理在分数阶三点边值问题中应用的新结果 被引量:3

New Results on Applications of Schauder's Fixed Point Theorem to Three Point Boundary Value Problem of Fractional Differential Equations
下载PDF
导出
摘要 用Schauder不动点定理研究如下分数阶三点边值问题解的存在性:Dα0+u(t)+f(t,u(t))+e(t)=0,0<t<1,u(0)=0,u(1)=βu(η),其中:1<α<2;0<β,η<1;Dα0+是标准的Riemann-Liouville微分;f关于其第一个或第二个变量可以具有奇性;e可以是负的. Positive solutions for three point bondary value problem of fractional differential equationsDα0+u(t)+f(t,u(t))+e(t)=0,0&lt;t&lt;1, u(0)=0,u(1)=βu(η)were obtained by means of Schauder’s fixed point theorem,where 1&lt;α&lt;2,0&lt;β,η&lt;1,Dα0+ is the standard Riemann-Liouville derivative,f may be singular in its first or second variable,e does not need to be positive.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2013年第2期173-178,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:10571021 10701020) 中央高校基本科研业务费专项基金
关键词 正解 SCHAUDER不动点定理 三点边值问题 分数阶微分方程 positive solutions Schauder’s fixed point theorem three point boundary value problem fractional differential equations
  • 相关文献

参考文献8

  • 1Kilbas A A, Srivasfava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations [M]. North-Holland Mathematics Studies, Vol. 204. Amsterdam.. Elsevier, 2006. 被引量:1
  • 2Oldham K B, Spanier J. The Fractional Calculus [M]. New York: Academic Press, 1974. 被引量:1
  • 3Ross B. Fractional Calculus and Its Applications[M]. Lecture Notes in Mathematics, Vol. 457. Berlin: Springer, 1975. 被引量:1
  • 4Nonnenmacher T F, Metzler R. On the Riemann-Liouvile Fractional Calculus and Some Recent Applications [J]. Fraetals, 1995, 3(3).. 557-566. 被引量:1
  • 5Tatom F B. The Relationship between Fractional Calculus and Fractals [J]. Fractals, 1995, 3(1) : 217 229. 被引量:1
  • 6Podlubny I. Fractional Differential Equations [M]. Mathematics in Science and Engineering, Vol. 198. New York: Academic Press, 1999. 被引量:1
  • 7Samko S G, Kilhas A A, Marichev O I. Fractional Integral and Derivatives Theorey and Applications [M]. [S. 1. ] : Gordon and Breach Science Publishers, 1993. 被引量:1
  • 8王丽颖,许晓婕.Schauder不动点定理在分数阶三点边值问题中的应用[J].吉林大学学报(理学版),2012,50(2):195-200. 被引量:3

二级参考文献17

  • 1Kilbas A A,Srivastava H M,Trujillo J J.Theory and Applications of Fractional Differential Equations[M].Amsterdam:North-Holland Mathematics Studies,2006. 被引量:1
  • 2Oldham K B,Spanier J.The Fractional Calculus[M].New York:Academic Preess,1974. 被引量:1
  • 3Ross B.The Fractional Calculus and Its Applications[M].Berlin:Springer-Verlag,1975. 被引量:1
  • 4Nonnenmacher T F,Metzler R.On the Riemann-Liouvile Fractional Calculus and Some Recent Applications[J].Fractals,1995,3(3):557-566. 被引量:1
  • 5Tatom F B.The Relationship between Fractional Calculus and Fractals[J].Fractals,1995,3(1):217-229. 被引量:1
  • 6Podlubny I.Fractional Differential Equations[M].New York:Academic Press,1999. 被引量:1
  • 7Samko S G,Kilbas A A,Marichev O I.Fractional Integral and Derivatives(Theorey and Applications)[M].Switzerland:Gordon and Breach,1993. 被引量:1
  • 8BAI Zhan-bing,LHai-shen.Positive Solutions for Boundary Value Problem of Nonlinear Fractional DifferentialEquation[J].J Math Anal Appl,2005,311(2):495-505. 被引量:1
  • 9JIANG Da-qing,YUAN Cheng-jun.The Positive Properties of Green’s Function for Dirichlet-Type Boundary ValueProblems of Nonlinear Fractional Differential Equations and Its Application[J].Nonlinear Analysis Series A:Theory,Methods and Applications,2010,72(2):710-719. 被引量:1
  • 10Agarwal R P,O’Regan D,Staněk S.Positive Solutions for Dirichlet Problems of Singular Nonlinear FractionalDifferential Equations[J].J Math Anal Appl,2010,371:57-68. 被引量:1

共引文献2

同被引文献21

  • 1郭大钧,孙经先.非线性常微分方程泛函方法[M].济南:山东科学技术出版社.1994. 被引量:8
  • 2Mophou G M. Existence and uniqueness of mild solutions to impulsive fractional differential equations[J]. Nonlinear Analysis: Theory, Methods & Applications, 2010, 72(3): 1604-1615. 被引量:1
  • 3Diethelm K. The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type [M]. Springer, 2010. 被引量:1
  • 4Babakhani A, Daftardar-Gejji V. Existence of positive solutions of nonlinear fractional differential equations[J]. Journal of Mathematical Analysis and Applications, 2003, 278(2): 434-442. 被引量:1
  • 5Bajlekova E G. Fractional evolution equations in Banach spaces[M]. Eindhoven: Technische Universiteit Eindhoven, 2001. 被引量:1
  • 6Lakshmikantham V, Vatsala A S. Basic theory of fractional differential equations[J]. Nonlinear Analysis: Theory, Methods & Applications, 2008, 69(8): 2677-2682. 被引量:1
  • 7Zhang S. The existence of a positive solution for a nonlinear fractional differential equation[J]. Journal of Mathematical Analysis and Applications, 2000, 252(2): 804-812. 被引量:1
  • 8Ahmad B, Nieto J J. Existence of solutions for nonlocal boundary value problems of higher-order nonlinear fractional differential equations [C]//Abstract and Applied Analysis. Hindawi Publishing Corporation, 2009. 被引量:1
  • 9Banas J. On measures of noncompactness in Banach spaces[J]. Commentationes Mathematicae Universitatis Carolinae, 1980, 21(1): 131-143. 被引量:1
  • 10王丽颖,许晓婕.Schauder不动点定理在(k,n-k)共轭边值问题中的应用[J].吉林大学学报(理学版),2010,48(4):551-556. 被引量:2

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部