摘要
研究目的:弓网仿真可通过拉格朗日第二方程建立耦合动力学方程组,该方程组属于时变参数系统,需利用直接积分或间接积分法进行求解。间接积分法中的Newmark法在选择适当参数时,属于无条件稳定,因此弓网仿真中采用较多。仿真过程除Newmark法本身的参数外,弓网仿真效果主要还取决于仿真时间间隔和仿真模型的阶数选择,因此必须对该参数的选择进行研究。研究结论:本文通过构建简单链形悬挂弓网系统动力学模型,研究了利用Newmark法求解过程中,不同车速下积分参数的选择问题。结果表明,模型阶数较低时系统需要振动稳定过程,模型阶数应选择150阶以上;为保证仿真精度,仿真间隔为临界仿真间隔的一半时仿真效果较为满意。
Research purposes : The coupling kinetic equations for the catenary - pantograph simulation can be built with the Second Lagrange Equation. These equations belong to the time varying system and their solutions can be obtained with the direct integration method or indirect integration method. When the Newmark integration method in the indirect integration method is used to choose the proper parameters, it belongs to an unconditional stability method and is often used in the catenary -pantograph simulation. Except the two parameters of Newmark method, the results of simulation also depend on the simulation's time interval and orders of the model. So the choice of these two parameters must be studied carefully. Research conclusions:This paper studies the choice of the integral parameters at the different train speed with the Newmark method by building the simple catenary suspension mechanics model for the catenary and pantograph system. The result shows the simulation needs an vibration stabilization process when the model order is too low, and the result is satisfied when the model order is over 150. The time interval should be the half of the critical time interval for ensuring the simulation accuracy.
出处
《铁道工程学报》
EI
北大核心
2013年第3期77-81,共5页
Journal of Railway Engineering Society
关键词
NEWMARK法
弓网仿真
积分参数
Netmark Integration Method
catenary- pantograph simulation
integral parameters