期刊文献+

光滑度量测度空间上的加权扩散方程的梯度估计(英文)

GRADIENT ESTIMATES FOR WEIGHTED DIFFUSION EQUATIONS ON SMOOTH METRIC MEASURE SPACES
下载PDF
导出
摘要 本文主要考虑了一类加权非线性扩散方程正解的梯度估计.在m-维Bakry-meryRicci曲率下有界的假设下,得到加权多孔介质方程(γ>1)正解的Li-Yau型梯度估计,此外对于加权快速扩散方程(0<γ<1),证明了Hamilton型椭圆梯度估计,结论分别推广了Lu,Ni,Va′zquezandVillani在文[1]和Zhu在文[2]中的结果. In this paper, we consider gradient estimates for the positive solutions to the nonlinear weighted diffusion equations. Under the assumption that the m-dimensional Bakry- ′ Emery Ricci curvature bounded below by a non-positive constant, we derive a Li-Yau type gradient estimate for postive solution of weighted porous medium equations (γ 1) and also prove a Hamilton type elliptic gradient estimate for weighted fast diffusion equation (0 γ 1), which generalize the ones of Lu, Ni, Va′zquez and Villani in [1] and Zhu in [2].
出处 《数学杂志》 CSCD 北大核心 2013年第2期248-258,共11页 Journal of Mathematics
基金 Supported by Fundamental Research Fund for the Central Universities
关键词 梯度估计 加权多孔介质方程 加权快速扩散方程 HARNACK不等式 m-Bakry-Emery Ricci曲率张量 gradient estimates weighted porous medium equations weighted fast diffusion equation Harnack inequality m-Bakry-Emery Ricci tensor
  • 相关文献

参考文献13

  • 1Lu Peng, Ni Lei, Vzquez J, Villani C. Local Aronson-Bnilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds[J]. J. Math. Pures Appl., 2009, 91: 1-19. 被引量:1
  • 2Zhu Xiaobao. Hamilton's gradient estimate and Liouville theorem for fast diffusion equations on noncompact Riemannian manifold[J]. Providence RI: AMS, 2010, 139: 1637-1644. 被引量:1
  • 3Vzquez J. The porous medium equation [M]. Oxford: Oxford Univ. Press, 2007. 被引量:1
  • 4Chow Bennett, Lu Peng, Ni Lei. Hamilton's Ricci flow[M]. Lectures in Contemporary Mathematics 3, Providence RI: AMS, 2006. 被引量:1
  • 5Dolbeault J, Gentil I, Guillin A, Wang Fengyu. L%functional inequalities and weighted porous media equations[J]. Potential Analysis, 2008, 28(1): 35 59. 被引量:1
  • 6Aronson D G, Bnilan P. Rgularit des solutions de l'quation des milieux poreux dans n [j]. C. R. Aead. Sei., 1979, 288: 103-105. 被引量:1
  • 7Li Peter, Yau Shing-Tung. On the parabolic kernel of the Schr6dinger operator[J]. Acta Math., 1986, 156:153 201. 被引量:1
  • 8Huang Guangyue, Huang Zhijie, Li Haizhong. Gradient estimates for the porous medium equations on Riemannian manifolds[J]. J. Geom. Anal., 2012, DOI 10.1007/s12220-012-9310-8. 被引量:1
  • 9Chen Li, Chen Wenyi. Gradient estimates for a nonlinear parabolic equation on complete non- compact Riemannian manifolds[J]. Ann. Glob. Anal. Geom., 2009, 35: 397-404. 被引量:1
  • 10Hamilton R. A matrix Harnack estimate for the equation[J]. Comm. Anal. Geom., 1993, i: 113-126. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部