期刊文献+

采用匹配滤波和ICA消除sEMG的工频干扰 被引量:1

Removing Power Frequency Noise in sEMG with Matched Filtering and ICA
下载PDF
导出
摘要 设计了一种采用匹配滤波和独立分量分析消除表面肌电信号中工频干扰的新方法。采用匹配滤波可以有效判断表面肌电信号中是否含有工频噪声,从而避免不加区分地对表面肌电信号进行工频去噪。在确定含有工频噪声的前提下,采用独立分量分析,该方法不但能够有效地消除表面肌电信号中的工频噪声,且不会对表面肌电信号的其它频率成分造成明显的影响,取得了良好的工频去噪效果。这一设计思想在实际的表面肌电信号检测时取得了较好的实验结果。 A new method of removing power frequency noise in surface electromyography (sEMG) is designed with matched filtering and independent component analysis. It can be judged effectively whether surface electromyography includes the power frequency noise with matched fihering. It can be avoided that the power frequency noise filter is abused. Under this premise that surface electromyography includes the power frequency noise, the power frequency noise can be removed effectively and the other frequency components is not affected significantly by using independent component analysis. The experiment proved that this method is effective.
出处 《计量学报》 CSCD 北大核心 2013年第2期168-172,共5页 Acta Metrologica Sinica
基金 国家自然科学基金(60903084) 浙江省自然科学基金(Y1090968,Y1111189,Y1101230) 浙江省科技计划项目(2010C33075,2010C33131)
关键词 计量学 表面肌电信号 工频噪声 匹配滤波 独立分量分析 Metrology Surface electromyography Power frequency noise Matched filtering Independent component analysis
  • 相关文献

参考文献13

二级参考文献17

  • 1罗志增,王人成.具有触觉和肌电控制功能的仿生假手研究[J].传感技术学报,2005,18(1):23-27. 被引量:13
  • 2王人成,杨巍,黄昌华,李波.肌电控制及肌电信号的分析处理[J].中国康复医学杂志,1996,11(6):261-263. 被引量:10
  • 3Deluca C.Physiology and mathematics of myoelectric signals[J].IEEE Trans on Biomed Eng,1979,26(6):313 ~325. 被引量:1
  • 4Khalil M,Duchene J.Uterine EMG Analysis:A Dynamic Approach for Change Detection and Classification[J].IEEE Trans on Biomed Eng,2000,47 (6):748 ~ 756. 被引量:1
  • 5Hudgings B,Philip P,Scott R N.A new strategy for multifunction myoelectric control[J].IEEE Trans on Biomed Eng,1993,40(1):82~ 94. 被引量:1
  • 6A.Dostinsky and I.K.Daskalov, "Accuracy of 50Hz interference subtraction from an electrocardiogram" Med.& Biol. Eng &Comput., vol.34,pp489-494 1996. 被引量:1
  • 7R. V. Baratta, M, Solomonow, B. H. Zuou and M.Zhu,"Methods to reduce the variability of EMG power spectrum estimates," J.Electromyogr. KinesioL, vo18,pp279-285,1998. 被引量:1
  • 8David T.Mewett, Homer Nazeran, Karen J. Reynolds,"Removal of line interference form EMG" Proceeding of IEEE-EMBS Asia-Pacific Conference on Bimedical Engineering pp.141-142, 2000. 被引量:1
  • 9Simon Haykin,“Adaptive Filter Theroy”,(影印板),电子工业出版社,北京,1998. 被引量:1
  • 10Bell A J, Sejnowske T J. An information maximization approach to blind separation and blind deconvolution,Neural Computation, vol.7 1129-1159 1995. 被引量:1

共引文献53

同被引文献20

  • 1刘加海,王丽,王健.基于相空间、熵和复杂度变化的表面肌电信号分析[J].浙江大学学报(理学版),2006,33(2):182-186. 被引量:19
  • 2De Luca C J. Physiology and mathematics of myoelectric signals[J]. IEEE Trans Bio Med Eng, 1979,26(6) :313 - 325. 被引量:1
  • 3Hoover C D, Fulk G D, Fite K B. The Design and Initial Experimental Validation of an Active Myoelectrie Transfemoral Prosthesis [ J ] . Journal Medical Devices, 2012,6( 1 ) :011005 - 12. 被引量:1
  • 4Lei M, Wang Z Z, Feng Z J. Detecting nonlinearity of action surface EMG signal[J]. Phys Lett A,2001,290(5 - 6) : 297 - 303. 被引量:1
  • 5Hu X, Wang Z Z, Ren X M. Classification of surface EMG signal with fractal dimension [ J ]. J Zhejiang Urtiv Sci B,2005,6 ( 8 ) : 844 - 848. 被引量:1
  • 6Arjunan S P, Kumar D K, Naik G R. Features of sEMG based on source separation and fractal properties to detect wrist movements [ J ] . Biomed Eng Appl Basis Commun,2010,22 (4) : 293 - 300. 被引量:1
  • 7Naik G R, Kumar D K, Arjunan S P. Towards classification of low-level finger movements using forearm muscle activation: A comparative study based on ICA and Fractal theory [ J ]. Int J Biomed Eng Techno1,2011, 6(2) :150 - 162. 被引量:1
  • 8Arjunan S P, Kumar D K, Naik G R. A machine learning based method for classification of fractal features of forearm sEMG using twin support vector machines [ C]//Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, Buenos Aires, 2010. 被引量:1
  • 9Arjunan S P, Kumar D K, Naik G R. Fractal based modelling and analysis of electromyography to identify subtle actions[ C]//Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, Lyon, 2007. 被引量:1
  • 10Huang N, Shen Z. The Empirical mode decomposition and the Hilbert spectrum for nonlinear and non- stationary time series analysis [ J ]. Proc R Soc Lond A, 1998,454( 1971 ) :903 - 995. 被引量:1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部