期刊文献+

基于多层非负矩阵分解的工频干扰消除 被引量:1

Removal of Power Line Interference Based on Multi-layer Non-negative Matrix Factorization
下载PDF
导出
摘要 为保证信号测量可靠性和精确度,有效抑制工频干扰信号,提出了一种消除工频干扰的新方法。此方法避免了工频干扰的参数估计问题,也不需要单独输入参考源信号。以非负矩阵分解(NMF)为理论依据,以相似系数和重构信噪比为评估标准,进行工频干扰的消除。利用盲源分离思想,采用改进的多层NMF算法,对模拟数据和实测数据进行处理,有效完成了工频干扰信号的消除。 Power line interference is a common interference source in signal (such as bioelectric signal) with low frequency and weak amplitude detecting and transmission. It is an important technical problem to suppress power line interference effectively to gnarantee the reliability and accuracy of signal measure activities. One new method without complex parameter estimate and independent reference source signal was proposed to remove power line interference in this paper. The theory of non-negative matrix factorization (NMF) and the criteria of similar coefficient and signal to interference (SIR) were used to remove power line interference. Meanwhile, by employing the principle of blind source separation (BSS) and the improved algorithm of Multi-layer NMF into synthesized and real-life data, the method obtained satisfied and acceptable performance which is hard to be achieved by conventional filtering methods.
作者 贾崟 武俊义
出处 《电力科学与工程》 2009年第4期20-24,46,共6页 Electric Power Science and Engineering
关键词 工频干扰 非负矩阵分解 盲源分离 power line interference non-negative matrix blind source separation
  • 相关文献

参考文献16

二级参考文献85

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:210
  • 2高少武,周兴元,蔡加铭.时间域单频干扰波的压制[J].石油地球物理勘探,2001,36(1):51-55. 被引量:18
  • 3陈亚光,杨仲乐,陈心浩.诱发脑电信号中工频噪声及其谐波成分的去除[J].中南民族学院学报(自然科学版),1997,16(1):14-17. 被引量:2
  • 4陈宝林.最优化理论与算法[M].北京:清华大学出版社,1994.95. 被引量:2
  • 5杨福生.独立分量分析及其在生物医学工程中的应用.99'中国生物医学电子学学术年会论文集[M].南京:-,.34-37. 被引量:1
  • 6吴小培 冯焕清 等.独立分量分析在脑电信号预处理中的应用[J].北京生物医学工程,2000,19(3):201-205. 被引量:4
  • 7[1]Amari S.A theory of adaptive pattern classifiers [J].IEEE Trans.Electronic Computers,1967,16:299-307. 被引量:1
  • 8[2]Amari S.Natural gradient works efficiently in learning [J].Neural Comoutation,1998,10:251-276. 被引量:1
  • 9[3]Amari S,Cichocki A.Adaptive blind signal processing:Neural network approaches [J].Proc.IEEE,1998 ,86:2026-2048. 被引量:1
  • 10[4]Basak J,Amari S.Blind separation of uniformly distributed signals:A general approach [J].IEEE Trans.Neural Networks,1999,10:l173-1185. 被引量:1

共引文献302

同被引文献6

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部