期刊文献+

快速增量约束预测控制及在GLCC液位控制中的应用 被引量:11

Fast incremental predictive control with constraints and its application to control of GLCC liquid-level
下载PDF
导出
摘要 针对气-液柱状旋流式(GLCC)多相流量计的液位控制问题,提出一种增量多变量模型预测控制(MPC)算法。采用控制增量状态空间模型和阶梯式控制策略,建立约束多变量MPC优化控制问题。为在线计算约束优化问题,引入坐标轮换法和黄金分割法,在线计算控制变量增量值,进而得到预测控制量。最后,以GLCC多相流量计的两输入单输出液位控制模型为例,仿真验证本文算法的有效性。 For liquid-level control problem of gas-liquid cylindrical cyclone (GLCC) multi-phase flow device, an incremental multi-variables model predictive control (MPC) algorithm was proposed. By using state-space models with incremental control and the stair-like strategy, constrained multi-variables MPC was formulated as an optimized control problem. In order to solve the constrained optimization problem, the methods of coordinate alternation and golden section were introduced to calculate online the value of incremental control variables. This led to predictive control actions. Finally, the liquid-level control model with double-inputs and single-output of the GLCC multi-phase flow device was used to illustrate the effectiveness of the algorithm obtained.
出处 《化工学报》 EI CAS CSCD 北大核心 2013年第3期993-999,共7页 CIESC Journal
基金 国家自然科学基金项目(60904040) 高等学校博士点专项科研基金项目(20093317120002) 浙江省重大科技专项(2011C16040)~~
关键词 模型预测控制 约束控制 GLCC多相流量计 液位控制 坐标轮换法 model predictive control constrained control GLCC multi-phase flow device liquid-level control coordinate alternation method
  • 相关文献

参考文献16

  • 1Mohan R, Wang S, Shoham O. Design and performance of passive control system for gas-liquid cylindrical cyclone separators [J]. ASM[Journal of Energy Resources Technology, 1998, 120 (1): 49-55. 被引量:1
  • 2Gomez L E, Mohan R S, Marrelli J D, et al. Aspect ratio modeling and design procedure for GLCC compact separators [J]. ASM[Journal of Energy Resources Technology, 1999, 121 (1): 15-23. 被引量:1
  • 3Kouba G Chevron, Wang S, et al. Review of the state-of- the-art gas/liquid cylindrical cyclone (GLCC) technology field applications//Proceedings of the 2006 Society of Petroleum Engineers (SPE) International Oil & Gas Conference [C]. Beijing, China, 2006:1-9. 被引量:1
  • 4Wang S, Mohan R S, Shoharn O, et al. Performance improvement of gas-liquid cylindrical cyclone separators using integrated liquid level and pressure control system// Proceedings of the ASME Energy Sources Technology Conference and Exhibition [ C]. New Orlean, France, 2000:185-192. 被引量:1
  • 5Qin S J, Badgwell T A. A survey of industrial model predictive control technology[ J ]. Control Engineering Practice, 2003, 11 (7): 733-764. 被引量:1
  • 6Vouzis P D, Bleris G L, Arnold M G, Kothare M V. A system-on-a-chip implementation for embedded real-time model predictive control [J]. IEEE Transactions on Control Systems Technology, 2009, 17 (5): 1006-1015. 被引量:1
  • 7何德峰,邹涛,俞立.大型聚丙烯生产装置牌号切换滚动时域控制[J].化工学报,2010,61(2):405-412. 被引量:9
  • 8Shin M Y, Primbs J A. A Riccati based interior point algorithm for the computation in constrained stochastic MPC [J]. IEEE Transactions on Automatica Control, 2012, 57 (3): 760-765. 被引量:1
  • 9Richter S, Morari M, Jones C N. Towards computational complexity certification for constrained MPC based on Lagrange relaxation and the fast gradient method// Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference [C]. Orlando, USA, 2011:5223-5229. 被引量:1
  • 10Li P, Wendt M, Wozny G. A probabilistically constrained model predictive controller [J]. Automatica, 2002, 38 (8): 1171-1176. 被引量:1

二级参考文献19

共引文献27

同被引文献88

引证文献11

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部