期刊文献+

基于隐马尔可夫模型的通信态势估计方法 被引量:2

Communication Situation Estimating Method Based on HMM
下载PDF
导出
摘要 针对移动通信过程中通信态势无法被预知导致的服务效率较低问题,给出一种基于隐马尔可夫模型的区域通信态势估计方法。根据不同时间点的通信行为特征具有差异性的特点,对通信行为按不同的时间段进行划分,并自适应地给出具体的划分算法,即遗传法或遍历法。挖掘终端行为发生时间、地点以及通信行为之间的内在联系,构建隐马尔可夫模型,利用维特比译码算法对区域内终端位置及通信行为进行估计。仿真结果表明,当模式特征值取0.8时,该方法的终端位置预测成功率在73%左右,通信行为预测成功率在75%左右。 In the process of mobile communication,the service efficiency is low if the communication situation cannot be known in advance.Aiming at this question,this paper proposes a method for communication situation estimating based on the Hidden Markov Model(HMM).In general,user behaviors change as the time goes.It utilizing this feature gives a time slots division method and concrete algorithm according to the difference of efficiency,genetic algorithm or traversal algorithm.Then by mining the relationship between time,location and service,it builds HMM.This paper utilizes Viterbi algorithm to predict the communication situation.Simulation results show that the location predicting success rate is 73% and the behavior predicting success rate is 75% when the pattern feature value is 0.8.
出处 《计算机工程》 CAS CSCD 2013年第2期6-11,17,共7页 Computer Engineering
基金 国家自然科学基金资助项目(61171108)
关键词 隐马尔可夫模型 通信态势 模式特征 遗传算法 状态转移 行为特征 Hidden Markov Model(HMM) communication situation pattern feature genetic algorithm state transfer behavior characteristic
  • 相关文献

参考文献13

  • 1Chen M S,Park J S,Yu P. Efficient Data Mining for Path Traversal Patterns[J].IEEE Transactions on Knowledge and Data Engineering,1998,(02):209-221. 被引量:1
  • 2Yun C H,Chen M S. Mining Mobile Sequential Patterns in a Mobile Commerce Environment[J].IEEE Transactions on Systems Man and Cybernetics-Part C:Applications and Reviews,2007,(02):278-295. 被引量:1
  • 3Zhu Yanfeng,Zhang Yibo,Shang Weixiong. Trajectory Enabled Service Support Platform for Mobile Users'Behavior Pattern Mining[J].Mobile and Ubiquitous Systems:Networking & Services,2009,(02):1-10. 被引量:1
  • 4Chen T S,Chou Y S,Chen T C. Mining User Movement Behavior Patterns in a Mobile Service Environment[J].IEEE Transactions on Systems Man and Cybernetics-Part A:Systems and Humans,2012,(01):87-101. 被引量:1
  • 5Tseng V S,Lu E H,Huang C H. Mining Temporal Mobile Sequential Patterns in Location-based Service Environments[A].Washington,DC:IEEE Computer Society,2007.1-8. 被引量:1
  • 6Lu Kunche,Chen Weihsu,Yang Donlin. A Novel Approach for Efficient and Effective Mining of Mobile User Behaviors[J].Multimedia and Ubiquitous Engineering,2010,(01):1-6. 被引量:1
  • 7张琛,詹志辉.遗传算法选择策略比较[J].计算机工程与设计,2009,30(23):5471-5474. 被引量:72
  • 8王宏生.人工智能及其应用[M]北京:国防工业出版社,2006. 被引量:1
  • 9张普珩..Viterbi译码算法的研究与实现[D].国防科学技术大学,2008:
  • 10刘敏,陈树新,张子超,汪海宁.维特比译码的仿真与实现[J].中国电子科学研究院学报,2006,1(3):268-272. 被引量:6

二级参考文献26

共引文献129

同被引文献24

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部