期刊文献+

基于目标数据修正的差异性神经网络集成方法 被引量:1

A Diversity Neural Network Ensemble Method Based on Object Data Correction
原文传递
导出
摘要 通过对目标数据修正的原理进行分析,提出了一种新颖的基于目标数据修正的差异性神经网络集成方法.该方法利用对个体网络期望输出的动态修正,将其作为新的训练集,引导个体网络实现差异性学习.将其应用于变压器故障诊断,实验结果表明,该方法的故障诊断准确率优于个体网络独立训练的神经网络集成方法;与ADL(active diverse learning)方法相比,大大减少了集成网络的通信成本,是一种更为高效的神经网络集成方法. A novel object data correction based diversity neural network ensemble method is proposed by analyzing the object data correction principle. In this method, the individual networks are trained by correcting expectative output of individual network dynamically and set as new training sets, and all the individual networks in the ensemble are guided to realize diversity learning. The method is applied to the fault diagnosis of power transformer, the experiment results show that accuracy rate of the method is superior to the neural network ensemble method which is trained by individual networks, in comparison with ADL (active diverse learning), the communication cost of ensemble network is greatly reduced, it is a extremely efficient neural network ensemble method.
出处 《信息与控制》 CSCD 北大核心 2013年第1期58-63,70,共7页 Information and Control
基金 国家自然科学基金资助项目(60835004) 湖南省教育厅资助项目(10B109 10C1266) 湖南省科技计划资助项目(2011FJ3183) 湘潭大学校级资助项目(10XZX20)
关键词 目标数据修正 差异性神经网络 神经网络集成方法 object data correction diversity neural network neural network ensemble method
  • 相关文献

参考文献21

  • 1Dietterich T G. Machine learning research: Four current direc- tions[J]. Artificial Intelligence, 1997, 18(44): 97-136. 被引量:1
  • 2Hansen L K, Salamon P. Neural network ensembles[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10): 993-1001. 被引量:1
  • 3Krogh A, Vedelsby J. Neural network ensembles, cross valida- tion, and active learning[M]//Advances in Neural Information Processing Systems 7. Cambridge, MA, USA: MIT Press, 1995: 231-238. 被引量:1
  • 4Schapire R E. The strength of weak learnability[J]. Machine Learning, 1990, 5(2): 197-227. 被引量:1
  • 5Breiman L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140. 被引量:1
  • 6Cunningham P, Carney J. Diversity versus quality in classifi- cation ensembles based on feature selection[M]//Lecture Notes in Computer Science: vol.1810. Berlin, Germany: Springer- Verlag, 2000:109-116. 被引量:1
  • 7Opitz D. Feature selection for ensembles[C]//Proceedings of 16th National Conferece on Artificial Intelligence. San Fran- cisco, USA: AAAI Press, 1999: 379-384. 被引量:1
  • 8Aha D W, Bankert R L. A comparative evaluation of sequential feature selection algorithms[C]//Proceedings of the 5th Interna- tional Workshop on Artificial Intelligence and Statistics. Piscat- away, NJ, USA: IEEE, 1994: 1-7. 被引量:1
  • 9Bryll R, Gutierrez-Osuna R, Quek F. Attribute bagging: Im- proving accuracy of classifier ensembles by using random fea- ture subset[J]. Pattern Recognition, 2003, 36(3): 1291-1302. 被引量:1
  • 10凌锦江,陈兆乾,周志华.基于特征选择的神经网络集成方法[J].复旦学报(自然科学版),2004,43(5):685-688. 被引量:11

二级参考文献26

  • 1王永强,律方成,李和明.基于粗糙集理论和贝叶斯网络的电力变压器故障诊断方法[J].中国电机工程学报,2006,26(8):137-141. 被引量:99
  • 2Febriyanto A, Saba T. Oil-immersed power transformers condition diagnosis with limited dissolved gas analysis (DGA) data [C]. Universities Power Engineering Conference, Sydney, 2008. 被引量:1
  • 3Xiong H, Sun C. Artificial immune network classification algorithm for fault diagnosis of power transformer[J]. IEEE Trans. on Power Delivery, 2007, 22(2): 930-935. 被引量:1
  • 4Jain M, Srinivas M, Jain A. A novel web based expert system architecture for on-line and off-line fault diagnosis and control (FDC) of power system equipment[C]. Power System Technology and IEEE Power lndia Conference, NewDelhi, 2008. 被引量:1
  • 5Morais D, Rolim J. A hybrid tool for detection of incipient faults in transformers based on the dissolved gas analysis of insulating oil[J]. IEEETrans. on Power Delivery, 2006, 21(2): 673-680. 被引量:1
  • 6Luo J, Zai P, Jian Y. Fault diagnosis of power transformer based on ellipsoidal basis functional neural network[C] . International Conference on Wavelet Analysis and Pattern Recognition, Beijing, China, 2007. 被引量:1
  • 7Dong L, Xiao D, Liang Y, et al. Rough set and fuzzy wavelet neural network integrated with least square weighted fusion algorithm based fault diagnosis research for power transformers[J]. Electric Power Systems Research, 2008, 78(1): 129-136. 被引量:1
  • 8Hansen L, Salamon P. Neural network ensembles[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1990, 12(10): 993-1001. 被引量:1
  • 9Sollich P, Krogh A. Learning with ensembles: how over fitting can be useful[M]. Cambridge MA: MITPress, 1996: 190-196. 被引量:1
  • 10Zhu X, Yang Y. A lazy bagging approach to classification[J]. Pattern Recognition, 2008, 41(10): 2980-2992. 被引量:1

共引文献44

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部