期刊文献+

基于粗糙集约简的神经网络集成及其遥感图像分类应用 被引量:9

Neural Network Ensemble Based on Rough Sets Reduction and its Application to Remote Sensing Image Classification
下载PDF
导出
摘要 为降低集成特征选择方法的计算复杂性,提出了一种基于粗糙集约简的神经网络集成分类方法。该方法首先通过结合遗传算法求约简和重采样技术的动态约简技术,获得稳定的、泛化能力较强的属性约简集;然后,基于不同约简设计BP网络作为待集成的基分类器,并依据选择性集成思想,通过一定的搜索策略,找到具有最佳泛化性能的集成网络;最后通过多数投票法实现神经网络集成分类。该方法在某地区Landsat 7波段遥感图像的分类实验中得到了验证,由于通过粗糙集约简,过滤掉了大量分类性能欠佳的特征子集,和传统的集成特征选择方法相比,该方法时间开销少,计算复杂性低,具有满意的分类性能。 Neural network ensemble based on rough sets reduction is proposed to decrease the computing complexity of conventional feature ensemble selection algorithms. Firstly, a dynamic reduction technology, which integrates genetic algo- rithm and resample method, is used to get reduct sets that have stable and good generalization ability. Secondly, Multiple BP neural networks based on different reducts are built as base classifiers. According to the idea of selective ensemble, the best generalization ability neural network ensemble can be found by some search strategies. Finally, classification based on neural network ensemble can be completed by combination with vote rule. The method has been verified in the experiment of classifying Landsat 7 bands remote sensing image of chosen area. A number of feature sets of poor performance were discarded by reduction based on rough sets. Compared to conventional feature selection algorithms, the method takes less time, has lower computing complexity, and the performance is satisfying.
出处 《中国图象图形学报》 CSCD 北大核心 2008年第3期480-487,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(60775047) 湖南省自然科学基金项目(06JJ50112)
关键词 粗糙集 约简 神经网络集成 遥感图像分类 rough sets, reduction, neural network ensemble, remote sensing image classification
  • 相关文献

参考文献24

  • 1Hansen L K, Salamon P. Neural network ensembles [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10) : 993 - 1001. 被引量:1
  • 2周志华,陈世福.神经网络集成[J].计算机学报,2002,25(1):1-8. 被引量:245
  • 3Krogh A, Vedelsby J. Neural network ensembles, cross validation and active learning[ A]. In: Tesauro G, Touretzky D, Leen T eds, Advances in Neural Information Processing Systems 7 [ M ] , Cambridge, MA, USA: MIT Press, 1995:231-238. 被引量:1
  • 4Hampshire J, Waibel A. A novel objective function for improved phoneme recognition using time delay neural networks[ J]. IEEE Transactions on Neural Networks, 1990, 1(2) : 216 -228. 被引量:1
  • 5Cherkauer K J. Human expert level performance on a scientific image analysis task by a system using combined artificial neural networks [A]. In: Proceedings of the 13^th AAAI Work shop on Integrating Multiple Learned Models for Improving and Scaling Machine Learning Algorithms[C]. Portland, OR, USA, 1996:15 -21. 被引量:1
  • 6Maclin R, Shavlik J W. Combining the predictions of multiple classitiers: using competitive learning to initialize neural networks [ A]. In: Proceedings of the 14^th International Joint Conference on Artificial Intelligence[C]. Montreal, Canada, 1995:524-530. 被引量:1
  • 7Yao X, Liu Y. Making use of population information in evolutionary artificial neural networks [ J]. IEEE Transactions on Systems, Man and Cybernetics--Part B: Cybernetics, 1998, 28(3): 417 -425. 被引量:1
  • 8Zhou Z H, Wu J X, Jiang Y, et al. Genetic algorithm based selective neural network ensemble [ A]. In.. Proceedings of the 17^th International Joint Conference on Artificial Intelligence [ C ]. Seattle, WA,USA, 2001, 2:797 -802. 被引量:1
  • 9Zeke S, Chan H, Kasabov N. Fast neural network ensemble learning via negative-correlation data correction [ J]. IEEE Transactions on Neural Networks, 2005, 16(6) : 1707 - 1710. 被引量:1
  • 10傅向华,冯博琴,马兆丰,何明.增量构造负相关异构神经网络集成的方法[J].西安交通大学学报,2004,38(8):796-799. 被引量:4

二级参考文献39

  • 1Liu Y,IEEE Transactions Systems Manand Cybernetics.B,1999年,29卷,6期,716页 被引量:1
  • 2L.K. Hansen, P. Salamon. Neural network ensembles. IEEE Trans. Pattern Analysis and Machine Intelligence, 1990, 12(10): 993~1001. 被引量:1
  • 3P. Sollich, A. Krogh. Learning with ensembles: How over-fitting can be useful. In: D. Touretzky, M. Mozer, M. Hasselmo, eds.Advances in Neural Information Processing Systems, Vol 8.Cambridge, MA: MIT Press, 1996. 190~196. 被引量:1
  • 4L. Breiman. Bagging predictors. Machine Learning, 1996, 24(2): 123~140. 被引量:1
  • 5Y. Freund, R. Schapire. Experiments with a new boosting algorithm. In: Proc. the 13th Int'l Conf. Machine Learning.Bari, Italy: Morgan Kaufmann, 1996. 被引量:1
  • 6A. Krogh, J. Vedelsby. Neural network ensembles, cross validation, and active learning. In: G. Tesauro, D. S.Touretzky, T. K. Leen, eds. Advances in Neural Information Processing Systems 7. Cambridge, MA: MIT Press, 1995. 231~238. 被引量:1
  • 7T. Dietterich, G. Bakin. Solving multiclass learning problems via error-correcting output codes. Journal of AI Research, 1995, 2,263~ 286. 被引量:1
  • 8N. C. Oza, K. Tumer. Dimensionality reduction through classifier ensembles. NASA Ames Research Center, Tech. Rep.:NASA-ARC- IC-1999-126, 1999. 被引量:1
  • 9N. C. Oza, K. Tumer. Input decimation ensembles:Decorrelation through dimensionality reduction. In: J. Kittler, F.Roli, eds. Multiple Classifier Systems. Second InternationalWorkshop (MCS 2001), LNCS 2096. Berlin: Springer, 2001.238~ 247. 被引量:1
  • 10Z. Zheng, G. Webb. Integrating boosting and stochastic attribute selection committees for future improving the performance of decision tree learning. The 10th IEEE ICTAI, Los Alamitos,1998. 被引量:1

共引文献282

同被引文献104

引证文献9

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部