期刊文献+

一种基于局部梯度矢量的车辆检测方法

A Method for Vehicle Detection Based on Local Gradients Vector
下载PDF
导出
摘要 在物联网智能交通的车辆检测中,实时性极其重要。针对梯度方向直方图特征中特征矢量维数较多、计算量大的问题,分别对车辆梯度分布特点及支持向量机分类耗时与特征向量维数的关系进行分析,提出一种结合局部梯度矢量均值、散布矩阵特征和支持向量机进行车辆检测与提取的方法。首先,将样本图像均匀地分为若干小块;然后,分别计算块内的梯度矢量均值和散布矩阵作为样本的特征向量;最后,利用支持向量机进行分类训练与识别,其中又通过变步长法进一步减少计算量。实验结果表明,该方法的检测效果与基于梯度方向直方图特征的方法相当,但平均识别时间减少为51%。 The real-time performance of vehicle detection is very important in an intelligent transportation system.Conventional Histogram of Oriented Gradients(HOG) method has problems of lots of dimensions of feature vector and huge calculation.Therefore,this paper studies the characteristics of gradient distribution of vehicles and the influence of feature's dimension to Support Vector Machine(SVM)'s time performance.Therefore,the paper proposes a vehicle detection method,which combines local gradient vector's mean and scatter matrix with SVM.First of all,the sampled image is divided into a number of blocks uniformly.Then the gradient vector's mean and scatter matrix are calculated as feature vectors in each block.At last,the classification and identification are performed by SVM,which further reduces the calculation by variable step size.The experimental results show that the method's accuracy is equal to conventional method,but the average recognition time is reduced to 51% of conventional method.
出处 《计算机与现代化》 2013年第2期9-14,共6页 Computer and Modernization
基金 国家自然科学基金资助项目(60974105 61074161) 中央高校基本科研业务费专项资金资助项目(NZ2012307)
关键词 梯度矢量均值 散布矩阵 梯度方向直方图 车辆检测 gradient vector's mean scatter matrix Histogram of Oriented Gradients(HOG) vehicle detection
  • 相关文献

参考文献16

  • 1吴珺文,张学工.应用小波变换和PCA进行车辆的静态图像检测[J].清华大学学报(自然科学版),2002,42(11):1560-1564. 被引量:4
  • 2Zehang Sun, George Bebis, Ronald Miller. On-road vehi-cle detection using Gabor filters and support vector ma-chines [C ] // 2002 14th International Conference on DigitalSignal Processing Proceeding. 2002,2 : 1019-1022. 被引量:1
  • 3Luo-Wei Tsai,Jun-Wei Hsieh, Kuo-Chin Fan. Vehicle de-tection using normalized color and edge map [ J ]. IEEETransactions on Image Processing, 2007,16(3) :850-864. 被引量:1
  • 4Broggi A, Cerri P,Antonello P C. Multi-resolution vehicledetection using artificial vision[ C]// 2004 IEEE Intelli-gent Vehicles Symposium. 2004:310-314. 被引量:1
  • 5Bertozzi M, Broggi A, Castelluccio S. A real-time orientedsystem for vehicle detectionf J] . Journal of Systems Archi-tecture, 1997,43(1-5) :317-325. 被引量:1
  • 6齐美彬,潘燕,张银霞.基于车底阴影的前方运动车辆检测[J].电子测量与仪器学报,2012,26(1):54-59. 被引量:32
  • 7Ratan A L, Grimson W E L, Wells W M. Object detectionand localization by dynamic template warping[ J]. Interna-tional Journal of Computer Vision, 2000,36(2) :131-147. 被引量:1
  • 8Bensrhair A, Bertozzi A, Broggi A, et al. Stereo vision-based feature extraction for vehicle detection [ C ]// Pro-ceedings of IEEE Intelligent Vehicle Symposium 2002.2002:465-470. 被引量:1
  • 9Aizawa T, Tanaka A, Higashikage H, et al. Road surfaceestimation robust against vehicles ’ existence for stereo-based vehicle detectionf C]// IEEE 5th International Con-ference on Intelligent Transportation Systems. 2002;43-48. 被引量:1
  • 10刘怀愚..静态图像的车辆检测算法研究[D].淮北师范大学,2010:

二级参考文献32

  • 1皮燕妮,史忠科,黄金.智能车中基于单目视觉的前车检测和跟踪[J].计算机应用,2005,25(1):220-223. 被引量:13
  • 2徐伟,王朔中.基于视频图像Harris角点检测的车辆测速[J].中国图象图形学报,2006,11(11):1650-1652. 被引量:29
  • 3BARRON J, FLEET D, BEAUCHEMIN S. Performance of optical flow Techniques[J]. Computer Vision, 1994, 12(1): 43-77. 被引量:1
  • 4WANG J X, BEBIS G, MILLER R. Overtaking vehicle detection using dynamic and quasi-static background modeling[C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, California, America, 2005:64-71. 被引量:1
  • 5COLLADO J M, HILARIO C. Model based vehicle detection for intelligent vehicles[C]. Proc. of IEEE Intelligent Vehicles Symposium(S.l.), IEEE Press, 2004: 572-577. 被引量:1
  • 6FRANKE U, GAVRILA D, GRZIGS, et al. Autonomous driving goes downtown[J]. IEEE Intelligent Systems &Their Applications, 1998, 13(6): 40-48. 被引量:1
  • 7ALI A, AFGHANI S. Shadow based on-road vehicle detection and verification using Haar wavelet trans- form[C]. International Conference on Information and Communication Technologies, 2005: 346-346. 被引量:1
  • 8AYTEKIN B, ALTUG E. Increasing driving safety with a multiple vehicle detection and tracking system using ongoing vehicle shadow information[C]. IEEE International Conference on Systems, Man and Cybernetics (SMC), 2010:3650-3656. 被引量:1
  • 9HAN S, HAN Y, HAHN H. Vehicle detection method using haar-like feature on real time system[C]. World Academy of Science, Engineering and Technology, 2009, 59: 455-459. 被引量:1
  • 10GAO D ZH, DUAN J M, ZHENG B G.et al. Preceding vehicles detection based on vehicle features[C]. SecondInternational Symposium on Intelligent Information Technology Application, 2008: 408-412. 被引量:1

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部