期刊文献+

基于基追踪-Moore-Penrose逆矩阵算法的稀疏信号重构 被引量:7

Sparse Signal Reconstruction Based on Basis Pursuit-Moore-Penrose Inverse Matrix
下载PDF
导出
摘要 压缩感知(Compressed Sensing,CS)稀疏信号重构其本质就是在稀疏约束条件下求解欠定线性方程组,基于迭代加权L-p(0<p£1,p=2)类范数算法减小重构误差成为近来稀疏信号重构热点之一。该文提出了基追踪-Moore-Penrose逆矩阵(Basis Pursuit-Moore-Penrose Inverse Matrix,BP-MPIM)算法:(1)由基追踪(Basis Pursuit,BP)算法得到稀疏信号非零元素位置(亦称支撑集,对应于测量矩阵的列);(2)通过求解由支撑集所对应测量矩阵的子矩阵和CS测量值组成的超定线性方程组实现稀疏信号重构,并证明了由此重构的稀疏信号是其唯一最小二次范数解。仿真的稀疏信号和实测宽带雷达回波信号脉冲压缩结果表明,和原来算法相比,新算法具有更小的重构误差,且误差只存在于其支撑集内。 The sparse signal reconstruction with Compressed Sensing (CS) is actually solving a system of underdetermined linear equations within the signal sparsity, of which one focus is to reduce recovery errors by the type of iteratively weighted L - p(0 〈 p 〈 1, p = 2) algorithms recently. The Basis Pursuit-Moore-Penrose Inverse Matrix (BP-MPIM) algorithm is proposed in this paper. First, nonzero element coordinates of the sparse signal are acquired by the basis pursuit algorithm, which are renamed with the sparse signal support set (corresponding with columns of the measure matrix). Then, the sparse signal recovery is solved from a set of superdetermined linear equations, which is composed of the submatrix of the sampling matrix and compressed sensing measurements. At the same time, it is proved that the reconstruction of sparse signals by this new algorithm is the one and only minimize L-2 norm. Both simulative sparse signals and pulse compressed data of wideband radar echoes indicate that the new algorithm has less recovery errors than the previous algorithms, which are just in the support set.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第2期388-393,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61271297,61272281) 博士点基金(20110203110001) 国防预研基金(9140A01060411DZ0101) 航空科学基金(20110181006)资助课题
关键词 雷达信号处理 压缩感知(CS) 信号重构 基追踪(BP) Moore-Penrose逆矩阵 Radar signal processing Compressed Sensing (CS) Signal reconstruction Basis Pursuit (BP) Moore- Penrose Inverse Matrix (MPIM)
  • 相关文献

参考文献14

  • 1Candès E,Romberg J,Tao T. Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information theory,2006,(02):489-509.doi:10.1109/TIT.2005.862083. 被引量:1
  • 2Donoho D L. Compressed sensing[J].IEEE Transactions on Information theory,2006,(04):1289-1306.doi:10.1109/TIT.2006.871582. 被引量:1
  • 3贺亚鹏,王克让,张劲东,朱晓华.基于压缩感知的伪随机多相码连续波雷达[J].电子与信息学报,2011,33(2):418-423. 被引量:5
  • 4Zhang M,Zhi T,Zhou Y. Direction-of-arrival estimation of wideband signals via covariance matrix sparse representation[J].IEEE Transactions on Signal Processing,2011,(09):4256-4270. 被引量:1
  • 5徐建平,皮亦鸣.压缩感知SAR成像中的运动补偿[J].电子与信息学报,2012,34(2):294-299. 被引量:6
  • 6Lawson C L. Contributions to the theory of linear least maximum approximation[D].University of California,1961. 被引量:1
  • 7Cline A K. Rate of convergence of Lawson's algorithm[J].Mathematics of Computation,1972,(02):167-176. 被引量:1
  • 8Chartand R. Exact reconstructions of sparse signals via nonconvex minimization[J].IEEE Signal Processing Letters,2007,(10):707-710.doi:10.1109/LSP.2007.898300. 被引量:1
  • 9Candes E,Wakin M,Boyd S. Enhancing sparsity by reweighted L-1 minimization[J].Journal Fourier Annual Application,2008,(05):877-905. 被引量:1
  • 10Needell D. Topics in compressed sensing[D].University of California,2009. 被引量:1

二级参考文献19

  • 1Candes E J, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. 被引量:1
  • 2Candes E J, Romberg J, and Tao T. Stable signal recovery from incomplete and inaccurate measurements [J].Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223. 被引量:1
  • 3Cand~s E J. Compressive sampling[C]. International Congress of Mathematicians, Madrid, Spain, 2006, 3: 1433-1452. 被引量:1
  • 4Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. 被引量:1
  • 5Candes E J and Wakin M B. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. 被引量:1
  • 6Romberg J. Imaging via compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 14-20. 被引量:1
  • 7Paredes J L, Arcw G R, and Wang Z M. Ultra-wideband compressed sensing: channel estimation [J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(3): 383-395. 被引量:1
  • 8Mishali M, Eldar Y C, and Tropp J A. Efficient sampling of sparse wideband analog signals [C]. IEEE 25th Convention of Electrical and Electronics Engineers, Israel, Dec 3-5, 2008: 290-294. 被引量:1
  • 9Skolnik M I. Radar Handbook[M]. 3rd ed, New York: McGraw-Hill, 2008: 382-425. 被引量:1
  • 10Baraniuk R and Steeghs P. Compressive radar imaging [C]. 2007 IEEE International Radar Conference, Boston, Massachusetts, USA, April 17-20, 2007: 128-133. 被引量:1

共引文献9

同被引文献52

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部