期刊文献+

稀疏信号重构的迭代平滑l_0范数最小化算法 被引量:6

Sparse Signal Reconstruction Based on Iterative Smoothed l_0 Norm Minimization
下载PDF
导出
摘要 压缩感知理论(Compressed Sensing,CS)是对信号压缩的同时进行感知的新理论,而如何通过有限的测量值重构稀疏信号是压缩感知理论中的核心问题。针对稀疏信号的重构问题,提出了迭代平滑l0范数最小化算法。该算法首先利用上次迭代得到的稀疏解估计部份支撑集I,然后建立并求解基于支撑集I的平滑l0范数最小化问题,最后对以上两步迭代少数几次得到稀疏解。数值仿真表明,本文所提出的算法重构信号需要测量值数少于已有的算法,且计算速度较快。 Compressed Sensing (CS) is a new framework for simultaneous sensing and compression, and how to reconstruct sparse signal form limited measurements is the key problem in CS. In this paper, a novel method called herative Smoothed l0 -norm (ISLO) is proposed for sparse signal reconstruction. This method estimates a support set I from a crrent reconstruction and obtains a new reconstruction by solving the minimization problem based on the support set I, and it iterates these two steps for a small number of times. Simulation results show that the proposed method needs fewer measurements than existing methods, while needing the low computational cost.
出处 《宇航学报》 EI CAS CSCD 北大核心 2012年第5期642-647,共6页 Journal of Astronautics
基金 国家自然科学基金(61072120) 新世纪优秀人才支持计划资助项目(NCET)
关键词 压缩感知 稀疏信号重构 基追踪 平滑l0范数 Compressed sensing Sparse signal reconstruction Basis pursuit Smoothed l0 norm
  • 相关文献

参考文献21

  • 1Candes E J. Compressive sampling [ C ]. The International Congress of Mathematics, Madrid, Spain, 2006. 被引量:1
  • 2Candes E J, Romberg J, Tao T. Robust uncertainty principle: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans. Information Theory, 2006, 52 (2) : 489 - 509. 被引量:1
  • 3Donoho D L. Compressed sensing[J]. IEEE Trans. Information Theory, 2006, 52(4): 1289- 1306. 被引量:1
  • 4Candes E J, Tao T. Decoding by linear programming[J]. IEEE Trans. Inf. Theory, 2005, 51(12): 4203-4215. 被引量:1
  • 5贺亚鹏,李洪涛,王克让,朱晓华.基于压缩感知的高分辨DOA估计[J].宇航学报,2011,32(6):1344-1349. 被引量:32
  • 6王开,刘郁林,张先玉.基于压缩感知的超宽带信道估计[J].2011,28(6):132-135. 被引量:1
  • 7黄琼,屈乐乐,吴秉横,等.压缩感知在超宽带雷达成像中的应用[J].2010,25(1):77-82. 被引量:1
  • 8Chen S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. SIAM J. Sci. Comput. ,1999, 20:33-61. 被引量:1
  • 9Chen S, Donoho D. Basis pursuit[ C]. in Prec. 28th Asilomar ConL Signals, Syst. Comput. , Monterey, CA, Nov. 1994. 被引量:1
  • 10Wang Y, Yin W. Sparse signal reconstruction via iterative support detection [ J ]. SIAM Journal on Imaging Sciences, 2010, 3(3) : 462 -491. 被引量:1

二级参考文献17

  • 1Krim H, Viberg M. Two decades of array signal processing research: the parametric approach [ J]. IEEE Signal Processing Magazine, 1996, 13(4):67-94. 被引量:1
  • 2Candes E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Transactions on Information Theory, 2006, 52 (2) :489 - 509. 被引量:1
  • 3Candes E J, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements [ J ]. Communications on Pure and Applied Mathematics, 2006, 59(8 ) : 1207 -1223. 被引量:1
  • 4Candes E J. Compressive sampling[ C ]. International Congress of Mathematicians, Madrid, Spain, August 22- 30, 2006. 被引量:1
  • 5Donoho D L. Compressed sensing [ J ]. IEEE Transactions on Information Theory, 2006, 52 (4) : 1289 - 1306. 被引量:1
  • 6Candes E J, Wakin M B. An introduction to compressive sampling[ J]. IEEE Signal Processing Magazine, 2008, 25 (2) : 21 -30. 被引量:1
  • 7Romberg J. Imaging via compressive sampling[ J]. IEEE Signal Processing Magazine, 2008, 25 (2) : 14 - 20. 被引量:1
  • 8Paredes J L, Arcw G R, Wang Z M. Uhra-Wideband compressed sensing: channel estimation [ J ]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1 (3) :383 -395. 被引量:1
  • 9Malioutov D, Cetin M, Willsky A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53 (8) : 3010 -3022. 被引量:1
  • 10Gurbuz A C, McClellan J H. A compressive beamforming method [ C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, Nevada, USA, March 30 -April 4, 2008. 被引量:1

共引文献31

同被引文献36

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部