期刊文献+

基于人工神经网络模拟啤酒酿造过程中糖度及乙醇浓度的变化 被引量:4

Prediction of sugar density and alcohol content during beer fermentation based on artificial neural network
下载PDF
导出
摘要 建立BP神经网络模型模拟啤酒酿造过程中糖度变化和乙醇浓度变化。将啤酒酿造过程中的发酵温度、麦汁浓度、接种量及发酵时间作为输入数据,将糖度变化和乙醇浓度的变化作为输出数据,运用BP神经网络建立啤酒酿造过程的模型。使用此模型模拟了主酵温度8℃、麦汁浓度11°P、接种量为2×107个/mL时糖度变化和乙醇浓度变化,结果糖度预测的均方根误差为2.66%,乙醇浓度预测的均方根误差为14.60%。结果表明,使用此模型能够准确预测啤酒酿造过程糖度变化和乙醇浓度的变化。 The back-propagation (BP) neural network was used to predict sugar density and alcohol content during beer fermentation. A BP neural net- work model of beer fermentation was established using fermentation temperature, sugar density of wort, inoculum and fermentation time as input val- ues, and sugar density and alcohol content during beer fermentation as output values. After the model was trained, the sugar density and alcohol con- tent were predicted for the beer fermentation conducted at 8~C with 1 l^P wort and an inoculum of 2~107cells/ml. The root mean square error of pre- diction of sugar density and alcohol content were 2.66% and 14.60%, respectively. The results showed that the model could be applied for the predic- tion of sugar density and alcohol content during beer fermentation.
出处 《中国酿造》 CAS 2013年第1期25-28,共4页 China Brewing
基金 国家重点基础研究发展计划‘973计划’(No.2010CB735706) 啤酒生物发酵工程国家重点实验室开放基金(No.K2012006)
关键词 糖度 乙醇浓度 BP神经网络 sugar density alcohol content BP neural networks
  • 相关文献

参考文献12

  • 1BRANYIK T,SILVA DP,BASZCZYNSKI M. A review of methods of low alcohol and alcohol-free beer production[J].Journal of Food Engineering,2012,(108):493-506. 被引量:1
  • 2GHASEMI-VARNAMKHASTI M,MOHTASEBI SS,RODRIGUEZMENDEZ ML. Electronic and bioelectronic tongues,two promising analytical tools for the quality evaluation of non alcoholic beer[J].Trends in Food Science and Technology,2011,(22):245-248. 被引量:1
  • 3GHASEMI-VARNAMKHASTIA M,MOHTASEBIA SS,RODRIGUEZMENDEZ ML. Classification of non-alcoholic beer based on aftertaste sensory evaluation by chemometric tools[J].Expert Systems With Applications,2012,(39):4315-4327. 被引量:1
  • 4钟金文,吴永良,张致伟.真空精馏法生产无醇啤酒的技术研究[J].现代食品科技,2007,23(3):45-46. 被引量:3
  • 5GARC(I)A-MART(I)NA,PEREZ-MAGARI(N)OB S,ORTEGA-HERAS M. Sugar reduction in musts with nanofiltration membranes to obtain low alcohol-content wines[J].Separation and Purification Technology,2010,(76):158-170. 被引量:1
  • 6EPWORTH N,BROWN AK,HAMMOND JRM. The use of laboratory-scale fermentations as a tool for modeling beer fermentations[J].Inst Chem Eng,2003,(81):50-56. 被引量:1
  • 7BROWNAK,HAMMONDJRM. Flavour control in small-scale beer fermentations[J].Food Biopr Proc,2003,(81):40-49. 被引量:1
  • 8GARC(I)A AI,GARC(I)A LA,D(I)AZ M. Prediction of ester production in industrial beer fermentation[J].Enzyme and Microbial Technology,1994,(16):66-71. 被引量:1
  • 9李冲伟,丛丽娜,张小愚,李宪臻.BP神经网络在酒精发酵过程建模的应用[J].中国酿造,2006,25(7):44-47. 被引量:13
  • 10谢中华.MATLAB统计分析与应用:40个案例分析[M]北京:北京航空航天大学出版社,2010354-373. 被引量:1

二级参考文献7

共引文献14

同被引文献49

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部