期刊文献+

复空间形式中具有常数量曲率的全实子流形(英文) 被引量:1

TOTALLY REAL SUBMANIFOLDS WITH CONSTANT SCALAR CURVATURE IN A COMPLEX SPACE FORM
下载PDF
导出
摘要 本文研究了复空间形式中具有常数量曲率的全实子流形.利用一种自伴算子,得到了这类子流形关于第二基本形式模长平方的积分不等式. In this paper, we investigate totally real submanifolds with constant scalar curva- ture in a complex space form. By using a self-adjoint operator, we obtain an integral inequality on the square of the norm of the second fundamental form.
出处 《数学杂志》 CSCD 北大核心 2013年第1期20-26,共7页 Journal of Mathematics
基金 Supported by the National Natural Science Foundation of China(11071005) Foundation for Excellent Young Talents of Higher Education(2011SQRL021ZD) the Natural Science Foundation of Anhui Educational Committee(KJ2010A125) the Natural Science Foundation of Anhui Educational Committee(KJ2012b197)
关键词 复空间形式 全实子流形 数量曲率 积分不等式 complex space form totally real submanifolds scalar curvature integral in- equality
  • 相关文献

参考文献2

二级参考文献14

  • 1Shen Yibing.Complete submanifolds in Rn+p with parallel mean curvature vector[J].Chin.Ann.of Math.,1985,3(6B):345-350. 被引量:1
  • 2Xu H W.A rigidity theorem for submanifolds with parallel mean curvature vector in a sphere[J].Arch.Math.,1993,61:489-496. 被引量:1
  • 3Yu Z H.Hypersurfaces in hyperbolic space with constant mean curvature[J].Chin.Ann.of Math.,1995,6(16A):709-716. 被引量:1
  • 4Cheng S T,Yau S T.Hypersurfaces with constant scalar curvature[J].Math.Ann.,1977,225:195-204. 被引量:1
  • 5Cheng Q M.Submanifolds with constant scalar curvatrue[J].Proc.Royal Society Edinbergh,2002,132:1163-1183. 被引量:1
  • 6Alencar H,do Carmo M P.Hypersurfaces with constant mean curvature in spheres[J].Proc.Amer.Math.Soc.,1994,120:1223-1229. 被引量:1
  • 7Omori H.Isometric immersion of Riemmanian manifolds[J].J.Math.Soc.Japan.,1967,19:205-214. 被引量:1
  • 8Yau S T.Harmonic functions on complete Riemannian manifolds[J].Comm.Pure and Appl.Math.,1975,28:201-228. 被引量:1
  • 9Santos W.Submanifolds with parallel mean curvature vector in Spheres[J].Tohoku Math.J.,1994,46:403-415. 被引量:1
  • 10Li A M,Li J M.An intrinsic rigidity theorem for minimal submanifolds in a sphere[J].Arch.Math.,1992,58:582-594. 被引量:1

共引文献9

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部