期刊文献+

Kaehler Submanifolds in a Locally Symmetric Bochner-Kaehler Manifold(Ⅱ)

局部对称Bochner-Kaehler流形的Kaehler子流形(Ⅱ)
下载PDF
导出
摘要 In this paper, we continue to discuss the sufficient conditions for a compact Kaehler submanifold in a locally symmetric Bochner-Kaehler manifold to be totally geodesic. We have obtained the following results. Theorem 1. Let M^(n+p) be a locally symmetric Bochner-Kaehler manifold of complex dimensions n+p and M^n a compact Kaehler submanifold of complex dimension (n≥2) in M^(n+p). Let and, where Ric(M)_x denotes the Ricci curvature of M^(n+p) at the point x. If the scalar curvature ρ_M of M^n satisfies then M^n must be totally geodesic in M^(n+p). Theorem 2. Let M^n and M^(n+p) be the same as those in Theorem 1. If the Ricci curvature Q_M of M^n satisfies then M^n is totally geodesic in M^(n+p).
机构地区 杭州大学数学系
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 1989年第2期8-16,共9页 数学季刊(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部