期刊文献+

语音识别HMM训练改进算法比较 被引量:1

下载PDF
导出
摘要 模型训练是HMM应用于语音识别时重要的一环,本文首先简要介绍了HMM及其三大基本问题,针对Baum-Welch算法收敛速度慢和易陷于局部最优解的缺陷,归纳总结了基于分段K均值算法、基于遗传算法、基于随机松弛算法的三大改进算法,通过实验验证了改进算法可以提高语音识别效果。
作者 徐礼逵 李林
出处 《计算机光盘软件与应用》 2012年第23期30-32,共3页 Computer CD Software and Application
基金 耕地质量关键指标遥感监测技术(2012BAH29B01)
  • 相关文献

参考文献5

二级参考文献12

  • 1Zhou Dexiang, Wang Xianrong. The improvement of HMM algorithm using wavelet dek-noising in speech recognition [ C]//2010 3rd Interna- tional Conference on Advanced Computer Theory and Engineering( 1V ), Chengdu :Int Assoc Comput Sci Inf Technol,2010:4438-4441 . 被引量:1
  • 2Garca-Moral A I, Solera-Uremia R, Pel6ez-Moreno C. Data balancing for efficient training of hybrid ANN/HMM automatic speech recognition system [ J ]. IEEE Transactions on Audio, Speech and Language Processing,2011,19:468-481. 被引量:1
  • 3Terashima R, Yoshimura T, Wakita T. Prediction method of speech recognition performance based on HMM-based speech synthesis technique [ J ]. IEEJ Transactions on Electronics, Information and Systems,2010,130:557-564. 被引量:1
  • 4Borgstrom B J, Alwan A. HMM-based reconstruction of unreliable spectrographic data for noise robust speech recognition [ J ]. IEEE Transactions on Audio:Speech and Language Processing,2010,18:1612-1623. 被引量:1
  • 5Hahm S J, Ohkawa Y I, Speech recognition under multiple noise environment based on muhi-mixture HMM and weight optimization by the as- pect model[ J]. IEICE Transactions on Information and Systems ,2010,93 (9) :2407-2416. 被引量:1
  • 6Rabiner L R, Juang B H. Fundamentals of Speech Recognition [ M ]. New Jersey: Prentice-Hall, 1999:321-370. 被引量:1
  • 7Bahl L R, Brown P F. et al. Maximum Mutual Information Estimation of Hidden Markov Model Parameters for Speech Recognition[A]. IEEE Proc. ICASSP'86[C], 1986.49~52. 被引量:1
  • 8Bahl L R et al. A New Algorithm for the Estimation of Hidden Markov Model Parameters[A]. IEEE Proc. ICASSP'88[C], 1988.493~496. 被引量:1
  • 9Chau C W, Kwong S,Diu C K,Fahrner w R.Optimization of HMM by a Genetic Algorithm[A].1997年声学、语言及信号处理国际会议论文集,Vo1.3:Speech Processing,Digital Signal Processing[C],1997.1727~1730. 被引量:1
  • 10Geman W S, et al. Stochastic relaxation, Gibbs distributions and Bayesian restoration of images[J]. IEEE Trans. PAMI-6, Nov. 1984:721~741. 被引量:1

共引文献7

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部