期刊文献+

基于无线传感器网络的K均值算法研究 被引量:2

Research of K-means algorithm based on wireless sensor network
下载PDF
导出
摘要 传统无线传感网一般由大量密集的传感器节点构成,存在节点计算能力、能源和带宽都非常有限的缺点,为了有效节能、延长网络寿命,介绍了基于聚类的K均值算法。该算法通过生成的簇头节点散播到网络的各个区域中,减少了每个区域内通信的能耗和可能会出现的一般节点过早死亡的情况,从而避免了网络对该区域提早失去监控。实验证明,该算法对各节点位置确定的无线传感器网络有低能耗、高稳定性特点,能较好的对无线传感器网络节点拓扑结构进行优化,达到能量均衡的目的。 Traditional wireless sensor network was consisted of a large number of dense sensor nodes generally, which has the disadvantage that the node's computing power, energy and bandwidth are very limited. In order to save energy effectively and prolong the network lifetime, the K-means algorithm based on clustering was introduced. By intempersing generated cluster head nodes to each area of network, the algorithm reduced the communication consumption of each area and the possible condition of common nodes' premature death. Thus it avoid the network prematurely losing control to the region. The experiment results show that for the wireless sensor networks that each node has determinate location, the algorithm has the features of low energy consumption and high stability. It can preferably optimize the topology of wireless sensor network nodes, and achieve the purpose of energy equilibrium.
出处 《电子设计工程》 2011年第6期113-115,共3页 Electronic Design Engineering
关键词 无线传感器网络 K均值算法 能量 节点 wireless sensor network K-means algorithm energy node
  • 相关文献

参考文献10

二级参考文献28

  • 1荆丰伟,刘冀伟,王淑盛.改进的K-均值算法在岩相识别中的应用[J].微计算机信息,2004,20(7):41-42. 被引量:5
  • 2Marques J P, Written, Wu Y F. Trans Pattern Recognition Concepts, Methods and Applications [M] ,2nd ed. Beijing: Tsinghua University Press, 2002. 51-74. 被引量:1
  • 3Huang Z.A fast clustering algorithm to cluster very large categorical data sets in data mining [EB/OL] . http: // www. ece. northwestern, edu/-harsha/Clustering/sigmodfn, ps, 2008-12-15. 被引量:1
  • 4Sambasivam S, Theodosopoulos N. Advanced data clustering methods of mining Web documents [J] . Issues in Informing Science and Information Technology, 2006, (3) : 563-579. 被引量:1
  • 5Sanjay Chawla, Pei Sun. SLOM: a new measure for local spatial outliers[J] .Knowledge and Information Systems, 2006, (4) :412 -429. 被引量:1
  • 6Sudipto G, Rajeev R, Kyuseok S. Cure: an effieient Elustering algorithm forlarge databases [J] . Information Systems, 2001, 261:35-58. 被引量:1
  • 7韩家炜 Michelin K.数据挖掘:概念与技术[M].北京:机械工业出版社,2001.. 被引量:62
  • 8Wendi B Heinzelman ,Anantha P Chandrakasan ,Hari Balakrishnan.An Application-Specific Protocol Architecture for Wireless MicrosensorNetworks[J].IEEE Trans on Wireless Comm,2002; 1(4) 被引量:1
  • 9W Heinzelman, A Chandrakasan, H Balakrishnan. Energy- efficient routing protocols for wireless microsensor networks[C].In :Proc 33rd Hawaii Int Conf System Sciences (HICSS), Maui, HI,2000-01 被引量:1
  • 10Priscilla Chen,Bob O'Dea,Ed Callaway Motorola Labs. Energy Efficient System Design with Optimum Transmission Range for Wireless Ad Hoc Network[C].In:IEEE International Conference on Comm(ICC 2002 ), 2002-04; 2: 945 ~952 被引量:1

共引文献116

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部