摘要
该文提出了求解二维加罚Navier-Stokes方程的最佳非线性Galerkin算法.这个算法在于在粗网格有限元空间上求解一非线性子问题,在细网格增量有限元空间Wh上求解一线性子问题.如果线性有限元被使用及,则该算法具有和有限元Galerkin算法同阶的收敛速度.然而该文提出的算法可以节省可观的计算时间.
This paper presents a optimum nonlinear Galerkin algorithm for solving the two-dimensional penalized Navier-Stokes equations. The algorithm consists in solving a nonlinear subproblem on a coarse grid finite element space h<H) and solving a linear subproblem on a fine grid incremental finite element space Wh. If the linear finite elements are used and, then the algorithm is of the convergence rate of same order as the finite element Galerkin algorithm. However, this algorithm can save a large amount of computing time.
出处
《数学物理学报(A辑)》
CSCD
北大核心
1998年第3期251-256,共6页
Acta Mathematica Scientia
基金
国家自然科学基金
西安交通大学科研基金