期刊文献+

一种有效的非线性 Galerkin 算法 被引量:1

An Effective Nonlinear Galerkin Scheme
下载PDF
导出
摘要 研究了一种改进的Marion&Temam型非线性Galerkin算法的全离散形式,通过理论证明和数值实验说明了这是一种稳定和高效的算法. Based on Marion & Temam type of nonlinear Galerkin method, a kind of full discrete form of improved nonlinear Galerkin method is studied. By theoretical demonstration and numerical examination, we intend to indicate that it is a stable and high performance scheme.
机构地区 西安交通大学
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 1998年第2期81-85,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金 攀登计划资助
关键词 非线性 N-S方程 GALERKIN算法 NavierStokes equations nonlinear Galerkin method Fourier method
  • 相关文献

参考文献2

二级参考文献2

同被引文献14

  • 1He Yinnian, Hou Yanren and Li Kaitai, Stability and Convergence of Optimum Spectral Non-linear Galerkin Methods, Mathematical Metods in the Applied Sciences, 24(2001),289-317. 被引量:1
  • 2C. Foias, G. R. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations,J. Diff. Eq., 73(1988), 309-353. 被引量:1
  • 3C. Foias, O. Manley and R. Temam, Modelling of the interaction of small and large eddies in two dimensional turbulence flows, RAIRO Math. Mod. Num. Anal., 22(1988), 93-114. 被引量:1
  • 4M. Marion and R. Temam, Nonlinear Galerkin methods, SIAM J. Numer. Anal., 26(1989),1139-1157. 被引量:1
  • 5M. Marion and R. Temam, Nonlinear Galerkin methods: the finite element case, Numer.Math., 57(1990), 205-226. 被引量:1
  • 6A. Ait Ou Ammi and M. Marion, Nonlinear Galerkin Methods and mixed finite elements:Two-grid algorithms for the Navier-Stokes equations, Numer. Math., 68(1994), 189-213. 被引量:1
  • 7M. Marion and J. Xu, Error estimates on a new nonlinear Galerkin method based on two-grid finite elements, SIAM J. Numer. Anal., 32(1995), 1170-1184. 被引量:1
  • 8B. Garicia-Archilla, J. Novo and E. S. Titi, An approximate inertial manifolds approach to postprocessing the Galerkin method for the Navier-Stokes equations, Math. Comp.,68(1999), 893-911. 被引量:1
  • 9J. G. Heywood and R. Rannacher, On the question of turbulence modeling by approximate inertial manifolds and the nonlinear Galerkin method, SIAM J. Numer. Anal., 30(1993)1603-1621. 被引量:1
  • 10A. Debussche and R. Temam, Inertial Manifolds with Delay, Applied Math. Letters,8(1995), 21-24. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部