期刊文献+

一种基于多特征波段岩土层次分类方法 被引量:2

Hierarchical Classification of Rock and Soil Based on Characteristic Multi-Band Image
下载PDF
导出
摘要 岩土分类与一般地表的地物分类相比难度大得多,针对已有的分类方法(监督分类和非监督分类)对于岩土分类精度不高、分类效果欠佳问题提出一种基于多特征波段岩土层次分类方法。它是一种自顶向下、逐步求精的层次分类方法,该方法结合无监督分类和监督分类两种分类方法的优势,利用多个特征波段组合,有层次地将不同类型的岩土体逐步分开,实现对岩土的精确分类。对北京市怀柔山区附近的ASTER影像数据进行的岩土分类实验结果表明,基于多特征波段岩土层次分类识别方法能显著提高岩土分类精度,总体精度提高10%,Kappa系数提高了0.1,并且能识别以往分类识别方法难以区分的岩石阴影和水体等地物,能够有效地克服'同物异谱'现象。 The classification of soil and rock is more difficult than classification of general terrain surfaces.The traditional methods(supervised classification and unsupervised classification) often yield to low accuracies and poor classification effects when applied to soil and rock classification,a new hierarchical classification algorithm based on characteristic multi-band image is proposed.The new algorithm is a top-down,gradually refinement hierarchical classification method which combines with both advantages of supervised classification and unsupervised classification.The new proposed method achieved the high accurate classification of soil and rock by separating rock and soil step by step hierarchically while making use of several characteristic band groups.Experimental results show that the new proposed method has better performance in improving the classification accuracies,the overall accuracy increases 10% and Kappa coefficient improves 0.1.Also,the new method can overcome "same things with different spectrums" phenomenon effectively.
出处 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2012年第6期1825-1833,共9页 Journal of Jilin University:Earth Science Edition
基金 国家高科技研究发展计划项目(2007AA12Z156) 国家自然科学基金项目(40672195 41072245) 北京市自然科学基金项目(4102029) 北京市地勘局基金项目(dkjdzky2010002)
关键词 岩土分类 影像处理 模式识别 波谱数据 精确分类 ASTER soils classification of rock and soil image processing pattern recognition spectral curves data precise classification ASTER
  • 相关文献

参考文献17

二级参考文献89

共引文献628

同被引文献78

  • 1张微,林健,陈玲,杨金中.基于极化分解的极化SAR数据地质信息提取方法研究[J].遥感信息,2014,29(1):10-14. 被引量:6
  • 2张国宣,孔锐,施泽生,郭立,刘士建,薛明东.基于核聚类方法的多层次支持向量机分类树[J].控制与决策,2004,19(11):1305-1307. 被引量:3
  • 3张国云,章兢.一种新的分裂层次聚类SVM多值分类器[J].控制与决策,2005,20(8):931-934. 被引量:9
  • 4Zhou Dengyong, Xiao Lin, Wu Mingrui. Hierarchical Classification via Orthogonal Transfer / / Proc of the 28 th International Conference on Machine Learning. Washington, USA, 2011: 801-808. 被引量:1
  • 5Cai L, Hofmann T. Hierarchical Document Categorization with Su?pport Vector Machines / / Proc of the ACM International Conference on Information and Knowledge Management. New York, USA, 2004: 78-87. 被引量:1
  • 6Binder A, Muller K, Kawanabe M. On Taxonomies for Multi-Class Image Categorization. InternationalJournal of Computer Vision, 2011,99(3): 281-301. 被引量:1
  • 7Silla C N, Freitas A A. A Survey of Hierarchical Classification across Different Application Domains. Data Mining and Knowledge Discovery, 2011 , 22 ( 112) : 31-72. 被引量:1
  • 8Chen Yangchi, Crawford M M, GhoshJ. Integrating Support Vector Machines in a Hierarchical Output Space Decomposition Framework / / Proc of the IEEE International Geoscience and Remote Sensing Symposium. Piscataway, USA, 2004: 949-952. 被引量:1
  • 9Kumar S, GhoshJ, Crawford M M. Hierarchical Fusion of Multiple Classifiers for Hyperspectral Data Analysis. Pattern Analysis and Applications, 2002, 5(2): 210-220. 被引量:1
  • 10Casasent D, Wang Y F. A Hierarchical Classifier Using New Su?pport Vector Machines for Automatic Target Recognition. Neural Networks, 2005,18(5/6): 541-548. 被引量:1

引证文献2

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部