期刊文献+

层次分类方法综述 被引量:20

A Survey of Hierarchical Classification Methods
下载PDF
导出
摘要 层次分类方法利用类别层次结构来分解问题和组织分类器,可有效解决多类分类问题.依据是否要求类别之间存在显式层次关系,层次分类方法可分为两大类.文中对不要求类别之间存在显式层次关系的层次分类方法进行综述.首先归纳和阐述此类方法所采用的基本框架,然后介绍和分析其中若干关键技术的研究进展,最后从算法和应用两个角度对国内外相关研究进行详细叙述,进而对现有方法进行总结,并给出进一步研究的方向. Hierarchical classification (HC), decomposing problem and organizing the classifiers according to the category hierarchy, is an efficient solution for multi-class classification problem. Depending on whether an explicit hierarchical relationship among categories is required, HC methods can be divided into two types. In this paper, the HC methods which do not require explicit hierarchical relationship among categories are reviewed systematically. Firstly, the basic framework of this type of methods is outlined. Then, the research progresses of several key techniques are elaborated and analyzed. Next, the related research work at home and abroad is described in detail from both algorithm and application perspectives. Finally, the existing methods are summarized and several future research directions are pointed out.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2013年第12期1130-1139,共10页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.60775015 61125305 61233011) 江苏省自然科学基金项目(No.BK20131351) 高等学校学科创新引智计划项目(No.B13022) 江苏高校优势学科建设工程项目 江苏省青蓝工程项目 中央高校基本科研业务费专项资金项目(No.30920130122005 30920130122006 30920130121004)资助
关键词 层次分类 多类分类 类别层次 特征融合 图像分类 Hierarchical Classification, Multi-Class Classification, Category Hierarchy, Feature Fusion, Image Classification
  • 相关文献

参考文献62

  • 1Zhou Dengyong, Xiao Lin, Wu Mingrui. Hierarchical Classification via Orthogonal Transfer / / Proc of the 28 th International Conference on Machine Learning. Washington, USA, 2011: 801-808. 被引量:1
  • 2Cai L, Hofmann T. Hierarchical Document Categorization with Su?pport Vector Machines / / Proc of the ACM International Conference on Information and Knowledge Management. New York, USA, 2004: 78-87. 被引量:1
  • 3Binder A, Muller K, Kawanabe M. On Taxonomies for Multi-Class Image Categorization. InternationalJournal of Computer Vision, 2011,99(3): 281-301. 被引量:1
  • 4Silla C N, Freitas A A. A Survey of Hierarchical Classification across Different Application Domains. Data Mining and Knowledge Discovery, 2011 , 22 ( 112) : 31-72. 被引量:1
  • 5Chen Yangchi, Crawford M M, GhoshJ. Integrating Support Vector Machines in a Hierarchical Output Space Decomposition Framework / / Proc of the IEEE International Geoscience and Remote Sensing Symposium. Piscataway, USA, 2004: 949-952. 被引量:1
  • 6Kumar S, GhoshJ, Crawford M M. Hierarchical Fusion of Multiple Classifiers for Hyperspectral Data Analysis. Pattern Analysis and Applications, 2002, 5(2): 210-220. 被引量:1
  • 7Casasent D, Wang Y F. A Hierarchical Classifier Using New Su?pport Vector Machines for Automatic Target Recognition. Neural Networks, 2005,18(5/6): 541-548. 被引量:1
  • 8Wang Y F, Casasent D. New Support Vector-Based Design Method for Binary Hierarchical Classifiers for Multi -Class Classification Problems. Neural Networks, 2008, 21 (2/3) : 502-510. 被引量:1
  • 9Marszalek M, Schmid C. Semantic Hierarchies for Visual Object Recognition / / Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Minneapolis, USA, 2007: 1-7. 被引量:1
  • 10Zweig A, Weinshall D. Exploiting Object Hierarchy: Combining Models from Different Category Levels / / Proc of the 11 th Interna?tional Conference on Computer Vision. Rio deJaneiro, Brazil, 2007: 1-8. 被引量:1

二级参考文献74

共引文献32

同被引文献219

引证文献20

二级引证文献147

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部