期刊文献+

LINEAR REGRESSION OF INTERVAL-VALUED DATA BASED ON COMPLETE INFORMATION IN HYPERCUBES 被引量:4

LINEAR REGRESSION OF INTERVAL-VALUED DATA BASED ON COMPLETE INFORMATION IN HYPERCUBES
原文传递
导出
摘要 Recent years have witnessed an increasing interest in interval-valued data analysis. As one of the core topics, linear regression attracts particular attention. It attempts to model the relationship between one or more explanatory variables and a response variable by fitting a linear equation to the interval-valued observations. Despite of the well-known methods such as CM, CRM and CCRM proposed in the literature, further study is still needed to build a regression model that can capture the complete information in interval-valued observations. To this end, in this paper, we propose the novel Complete Information Method (CIM) for linear regression modeling. By dividing hypercubes into informative grid data, CIM defines the inner product of interval-valued variables, and transforms the regression modeling into the computation of some inner products. Experiments on both the synthetic and real-world data sets demonstrate the merits of CIM in modeling interval-valued data, and avoiding the mathematical incoherence introduced by CM and CRM. Recent years have witnessed an increasing interest in interval-valued data analysis. As one of the core topics, linear regression attracts particular attention. It attempts to model the relationship between one or more explanatory variables and a response variable by fitting a linear equation to the interval-valued observations. Despite of the well-known methods such as CM, CRM and CCRM proposed in the literature, further study is still needed to build a regression model that can capture the complete information in interval-valued observations. To this end, in this paper, we propose the novel Complete Information Method (CIM) for linear regression modeling. By dividing hypercubes into informative grid data, CIM defines the inner product of interval-valued variables, and transforms the regression modeling into the computation of some inner products. Experiments on both the synthetic and real-world data sets demonstrate the merits of CIM in modeling interval-valued data, and avoiding the mathematical incoherence introduced by CM and CRM.
出处 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2012年第4期422-442,共21页 系统科学与系统工程学报(英文版)
基金 supported in part by the National Natural Science Foundation of China(NSFC) under Grants 71031001,70771004,70901002 and 71171007 the Foundation for the Author of National Excellent Doctoral Dissertation of PR China under Grant 201189 the Program for New Century Excellent Talents in University under Grant NCET-1 1-0778
关键词 Interval-valued data linear regression complete information method (CIM) HYPERCUBES Interval-valued data, linear regression, complete information method (CIM), hypercubes
  • 相关文献

参考文献25

  • 1Bertrand,P,Goupil,F. Descriptive statistics for symbolic data[A].Beilin:Springer-Verlag,2000.106-124. 被引量:1
  • 2Billard,L,Diday,E. Regression analysis for interval-valued data[A].Springer-verlag,2000. 被引量:1
  • 3Billard,L,Diday,E. Symbolic regression analysis[A].Springer-verlag,2002. 被引量:1
  • 4Billard,L,Diday,E. From the statistics of data to the statistics of knowledge:symbolic data analysis[J].Journal of the American Statistical Association,2003,(462):470-487. 被引量:1
  • 5Billard,L,Diday,E. Symbolic Data Analysis:Conceptual Statistics and Data Mining[M].Wiley,Chichester,UK,2006. 被引量:1
  • 6Bock,H.H,Diday,E. Analysis of Symbolic Data:Exploratory Methods for Extracting Statistical Information from Complex Data[M].Beilin:Springer-Verlag,2000. 被引量:1
  • 7Cazes,P,Chouakria,A,Diday,E,Schektman,Y. Extension de l'analyse en composantes principales à des donnés de type intervalle[J].Revue de Statistique Apliquée,1997,(03):5-24. 被引量:1
  • 8de Carvalho,F.A.T,Brito,P,Bock,H.H. Dynamic clustering for interval data based on L2 distance[J].Computational Statistics,2006,(02):231-250. 被引量:1
  • 9de Carvalho,F.D.T,de Souza,R.M.C.R,Chavent,M,Lechevallier,Y. Adaptive Hausdorff distances and dynamic clustering of symbolic interval data[J].Pattern Recognition Letters,2006,(03):167-179. 被引量:1
  • 10de Souza,R.M.C.R,de Carvalho,F.D.T. Clustering of interval data based on city-block distances[J].Pattern Recognition Letters,2004,(03):353-365. 被引量:1

同被引文献36

  • 1刘遵义,陈锡康,杨翠红,Leonard K.Cheng,K.C.Fung,Yun-Wing Sung,祝坤福,裴建锁,唐志鹏.非竞争型投入占用产出模型及其应用——中美贸易顺差透视[J].中国社会科学,2007(5):91-103. 被引量:328
  • 2Sankararaman S, Mahadevan S. Likelihood-based representation of epistemic uncertainty due to sparse point data and/or interval data [ J ]. Reliability Engineering & System Safety, 2011,96 (7) : 814-824. 被引量:1
  • 3Diday E,Noirhomme-Fraiture M. Symbolie data analysis and the SODAS software [ M ]. London: Wiley Online Library, 2008: 81-92. 被引量:1
  • 4Billard L. Symbolie data analysis: what is it? [ M ]. New York : Springer ,2006:261-268. 被引量:1
  • 5Diday E,Esposito F. An introduetion to symbollie data analysis and the SODAS software [ J ]. Intelligent Data Analysis, 2003,.7(6) :583-601. 被引量:1
  • 6Wang H W, Guan R, Wu J J. CIPCA: complete-information- based principal component analysis for interval-valued data[ J]. Neurocomputing,2012,86 : 158-169. 被引量:1
  • 7Yue Z L. A group decision making approach based on aggrega- ting interval data into interval-valued intuitionistie fuzzy informa- tion [ J ]. Applied Mathematical Modelling, 2014, 38 ( 2 ) : 683-698. 被引量:1
  • 8Cern~ M, Hladik M. The complexity of computation and approxi- mation of the t-ratio over one-dimensional interval data [ J ]. Com- putational Statistics and Data Analysis,2014,80:26-43. 被引量:1
  • 9Yang X J,Yan L L, Peng H, et al. Encoding words into cloud models from interval-valued data via fuzzy statistics and member- ship function fitting [ J ]. Knowledge-Based Systems, 2014,55 : 114-124. 被引量:1
  • 10Silverman B W. Density estimation for statistics and data analy- sis[ M ]. London : Chapman and Hall, 1986:34-48. 被引量:1

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部