期刊文献+

条件Lyapunov指数和时间τ-条件Lyapunov指数的研究 被引量:1

Study on the Conditional Lyapunov Exponents and Time- Lyapunov Exponents
下载PDF
导出
摘要 本文研究条件Lyapunov指数与-条件Lyapunov指数的定义、求解技术及其应用。两种指数从不同角度对系统本质特性进行刻划。条件Lyapunov指数在混沌同步中有重要应用,近来它还被用来进行相空间重构问题的研究。时间-条件Lyapunov指数是一类利用状态变量的离散采样作驱动信号的脉冲方式同步的重要定量指标。本文提出一种简便的求解技术,在Wolf求解Lyapunov指数谱程序的基础上,稍加改动即可使其适用于Lyapunov指数、条件Lyapunov指数和时间-条件Lyapunov指数的计算,对其正确性进行了验证。研究发现对时间-条件Lyapunov指数的计算,可以准确估计脉冲方式同步的最大间隔和最优区间,对于实际工作具有重要意义。 The definition, solving method and potential applications of the conditional Lyapunov exponents(CLE) and time- Lyapunov exponents are discussed . These two exponents describe the essential properties of dynamical systems from different points of view. The conditional Lyapunov exponent plays an important part in chaotic synchronization and has been used in the research of phase space reconstruction recently. On the other hand, time- Lyapunov exponents are important quantitative indexes in the impulsive synchronization. The contribution of this paper is to propose handy algorithm to derive these two exponents. Using our method and doing little modification on the basis of Wolf programming, which is used to calculate Lyapunov exponents of differential dynamic systems, these two exponents can be acquired easily. The correctness of the result are also verified. Using this algorithm, the longest time-interval and the best time for impulsive synchronization can also be estimated.
出处 《电路与系统学报》 CSCD 2000年第2期33-37,共5页 Journal of Circuits and Systems
基金 国家自然科学基金资助项目!(19702015)。
关键词 混沌同步 脉冲同步 条件Lyapunov指数 Chaos Synchronization, Impulse Synchronization, Conditional Lyapunov ExponentP
  • 相关文献

参考文献8

二级参考文献3

共引文献12

同被引文献14

  • 1方锦清.非线性系统中混沌控制方法、同步原理及其应用前景(二)[J].物理学进展,1996,16(2):137-202. 被引量:117
  • 2Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Physical Review Letters, 1990, 64 (8) :821 - 824. 被引量:1
  • 3Roessler O E. An equation for continuous chaos[J].Physics Letters A, 1976, 57(5): 397-398. 被引量:1
  • 4Pecora L M, Carroll T L. Driving system with chaotic signals[J]. Physical Review A, 1991, 44(4) : 2347 -2383. 被引量:1
  • 5Wu C W, Chua L O. A unified framework for synchronization and control of dynamical systems [J]. Int J Bifurcation and Chaos, 1994, 4(4) : 979 - 998. 被引量:1
  • 6Kocarev L, Parliza V. General approach for chaotic synchronization with application to communication[J]. Physical Review Letters, 1995, 74(25): 5028-5031. 被引量:1
  • 7Matsumoto T, Chua L O, Kobayashi K. Hyperchaos:laboratory experiment and numerical confirmation[J].IEEE Transactions on CAS, 1986, 33(11): 1143 -1147. 被引量:1
  • 8Brucoli M, Carnimeo L, Grassi G. A method for the synchronization of hyperchaotic circuits[J]. Int J Bifurcation and Chaos, 1996, 6(9) : 1673 - 1681. 被引量:1
  • 9Grassi G, Mascolo. Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal[J].IEEE Transactions on CAS-I: Fundamental Theory and Applications, 1997, 44(10): 1011-1014. 被引量:1
  • 10He R, Vaidya P G. Analysis and synthesis of synchronous periodic and chaotic systems [J]. Physical Review A, 1992, 46(12): 7387- 7392. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部