期刊文献+

BP神经网络性能与隐藏层结构的相关性探究 被引量:9

Effect of Multi-hidden-layer on Performance of BP Neural Network
下载PDF
导出
摘要 利用BP神经网络对多个给定的复杂非线性系统控制进行定量研究,着重讨论了BP神经网络因隐藏层层数和网络学习率之间差异从而引起对复杂非线性系统控制性能上的影响.通过实验数据的对比分析发现,BP神经网络隐藏层层数的递增与系统控制性能的提升并不成正相关性,网络学习率的选取范围可控制在0~2.0之间,具体参数因控制对象而异,可采用分段调试和二分法运算以确定最佳网络学习率参数. In this paper, quantitative study on a given complex nonlinear system is presented using BP neural network. The correlation is explored between the control performance on the given complex nonlinear system and the number of hidden layers and the difference of network learning rate. The analytical and test results well indicate that the improvement of control performance is not proportional to the increased number of hidden layers, and the optimal selection of neural learning rate is generally within 0-2. The specific value of learning rate depends on the specifically given system and the most suitable value range can be determined using sub-debugging method.
作者 杨守建 陈恳
出处 《宁波大学学报(理工版)》 CAS 2013年第1期48-52,共5页 Journal of Ningbo University:Natural Science and Engineering Edition
基金 宁波市自然科学基金(2010A610109)
关键词 BP神经网络 隐藏层层数 网络学习率 多项式拟合 BP neural network the number of hidden layers network learning rata curve fitting
  • 相关文献

参考文献12

二级参考文献32

  • 1龚安,张敏.BP网络自适应学习率研究[J].科学技术与工程,2006,6(1):64-66. 被引量:18
  • 2MAN Zhi-hong,WU Hong-ren,LIU S,et al.A new adaptive backpropagation algorithm based on Lyapunov stability theory for neural networks[J].IEEE Trans on Neural Networks,2006,17(6):1580-1591. 被引量:1
  • 3Wong W K,Yuan C W M,Fan D D.Stitching defect dctection and classification using wavelet transform and BP neural network[J].Expert Systems with Applications,2009,36:3845-3856. 被引量:1
  • 4Kamarthi S V,Pittner S.Accelerating neural network training using weight extrapolations[J].Neural Networks,1999,12(9):1285-1299. 被引量:1
  • 5Martin E Moiler S.A scaled conjugate gradient algorithm for fast supervised learning[J].Neural Networks,1993,6(3):525-533. 被引量:1
  • 6Yu C C,Lin B D.A backpropagation algorithm with adaptive learning rate and momentum coefficient[C]//Proceedings of the 2002 International Joint Conference on Neural Networks (IJCNN'02).Honolulu,2002:1218-1223. 被引量:1
  • 7WANG Wei,YU Bo.Text categorization based on combination of modified back propagation neural network and latent semantic analysis[J].Neural Computing and Applications,2009,18(8):875-881. 被引量:1
  • 8WU Wei,SHAO Hong-mei,QU Di.Strong convergence for gradient methods for BP networks training[C]//ZHAO Ming-sheng,SHI Zhong-zhi.Proceedings of 2005 International Conference on Neural Networks and Brains.Beijing:IEEE Press,2005:332-334. 被引量:1
  • 9Vogl T P, Mangis J K, Zigler A K, et al. Accelerating the convergence of the back propagation method [ J ]. Bio Cybern, 1998 ,59:246 - 264. 被引量:1
  • 10Rivas M A, Harbour M G. Ada RTS POSIX-extending ada' s real - time system annex with the POSIX scheduling services[J]. Ada Letters,2001,21 ( 1 ). 被引量:1

共引文献77

同被引文献78

引证文献9

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部