期刊文献+

改进的BP网络在纸病识别中的应用 被引量:3

Application of Improved BP Network in the Paper Defect Recognition
下载PDF
导出
摘要 针对BP网络收敛速度慢、计算量大等缺点,采用学习样本产生的总误差调整权值,以提高BP算法的速度。文中通过仿真说明其算法的有效性,对改进BP算法用于纸病检测有一定的参考价值。实践表明,改进的BP网络能够满足在线纸病检测要求,平均识别率达94%以上。 According to the BP network was slow convergence and large amounts of calculation,this paper proposed the line detection method of eliminate the influence of sample order and adaptive correction weights of BP network method. To improve speed and efficiency of the training at the same time,the recognition process was more stable and reliable,more accurate identification results. The experiments show that improved BP network ean meet the re- quirements of online testing ,and recognition rate can reach more than 94%.
出处 《自动化与仪表》 北大核心 2013年第1期6-9,共4页 Automation & Instrumentation
基金 国家自然科学基金项目(30972322)
关键词 纸病 BP网络 模式识别 在线检测系统 paper defect BP Network pattern recognition on-line detection system
  • 相关文献

参考文献5

二级参考文献14

  • 1房晓栋,孙先仿.基于RBF网络的柴油机运行工况分析[J].微计算机信息,2005,21(1):81-82. 被引量:3
  • 2Gallant Stephen I. Neural network learning and expert systems[ M]. London: The MIT Press,1993. 被引量:1
  • 3Jukka livarinen,Katriina Heikkinen, Juhani Rauhamaa, Petri Vuorimaa, AriVisa. A defect detection scheme for web surface inspection[J].International Journal of Pattern Recognition and ArtificialIntelligence,2000, 1 4(6): 735~ 755. 被引量:1
  • 4Jukka livarinen. Surface defect detection with histogram-based exture features,intelligent robots and computer vision XIX[J].Algorithms,Techniques and Active Vision,Proc. SPIE 4197,2000:140~145. 被引量:1
  • 5S Hossain Hajimowlana,Roberto Muscedere,Graham A Jullien and James W Roberts. An in-camera data stream processing system for defect detection in Web inspection tasks[J].Real-Time Imaging, 1 999,5(1):23~34. 被引量:1
  • 6S H Hajimowlana,R Muscedere,G A Jullien,J W Roberts. Defect detection in web inspection using fuzzy fusion of texture features [C].ISCA2000-IEEE International Symposium on Circuits andSystems,May 28~31,2000,Geneva,Switzerland,718~721. 被引量:1
  • 7刘华,王金乐.常见纸病及检测技术[J].印刷质量与标准化,2007(5):22-24. 被引量:6
  • 8ChuringY.Backpropagation,Theory,Architecture and Application[M].Lawrence Erbaum Publishers,USA,1995:154-183. 被引量:1
  • 9(日)萩原将文,谷萩隆嗣,山口亨.人工神经网络与模糊信号处理[M].北京:科学出版社,2003:36-40. 被引量:1
  • 10关健华.全幅纸病检测技术及在造纸中的应用[J].中国造纸,2000,19(6):32-35. 被引量:24

共引文献12

同被引文献29

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部