期刊文献+

一类含有梯度项的塑性流体数学模型正解的存在性及正则性 被引量:2

Existence and Regularity of Nonnegative Solution of Mathematical Model of a Plastic Fluid with Gradient Terms
下载PDF
导出
摘要 考虑塑性流体的下列边界退化椭圆问题f1(u)uxx+uyy+g(u)|▽u|q+f(u)=0,(x,y)∈Ωu|Ω=0,(x,y)∈Ω经典解的存在性及其正则性.其中Ω={(x,y):x2+y2<1}R2,0<q<2,f1(t)是定义在(-∞,+∞)上的非负且单调递增的光滑函数,g(t)和f(t)是定义在(0,+∞)上的非负且单调递减的光滑函数.应用正则化技术及精细的估计技巧,在一定条件下得到了该问题经典解的存在性及其正则性,特别得到了该问题解的梯度无界性条件.显然,该结果比经典的结果更好。 We considered the singular quasi-linear anisotropic elliptic boundary value problem where Ω={(x,y):x2+y2〈1) R2,0〈q〈2,f1(t) Clearly,this is a boundary degenerate elliptic problem. We show that the solution of the Dirichlet boundary value problem was smooth in the interior and Holder continuous up to the degenerate boundary. The regularity of solution of the problem is more sharper than classical theory.
作者 徐中海
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期1-4,共4页 Journal of Xiamen University:Natural Science
基金 吉林省自然科学基金项目(201115180)
关键词 退化椭圆问题 存在性 正则性 先验估计 degenerate elliptic problem existence regularity priori estimate
  • 相关文献

参考文献14

  • 1Nachman A, Callegari A. A nonlinear singlar boundary value problem in the theory of pseudoplastic fluids[J]. SI- AM J Appl Math,1986,28:271-281. 被引量:1
  • 2Stuart C A. Existence theorems for a class of nonlinear in- tegral equations[J]. Math Z, 1974,137 : 49-66. 被引量:1
  • 3Taliaferro S D. A nonlinear singlar boundary value prob- lem[J]. Nonlinear Analysis TMA, 1979,3 : 897-904. 被引量:1
  • 4Crandall M G,Rabinowitz P H, Tartar L. On a Dirichlet problem with a singular nonlinearity[J]. Comm Partial Differential Equations, 1977,2 .. 193-222. 被引量:1
  • 5Lazer A C, McKenna P J. On a singular nonlinear ellipic boundary value problem[J]. Proc Amer Math Soc, 1991, 111:721-730. 被引量:1
  • 6Canic S,Keyfitz B L. An ellipict problem arising from the unsteady transonic small disturbance equation[J]. Journal of Differential Equations, 1996,125 : 548-574. 被引量:1
  • 7Choi Y S,Lazer A C,McKenna P J. On a singular quasi- linear anisotropic elliptic boundary value problem[J]. Trans A M S,1995,347..2633-2641. 被引量:1
  • 8Choi Y S, McKenna P J. A singular quasilinear anisotropic elliptic boundary value problem II[J]. Trans A M S, 1998,350 : 2925-2937. 被引量:1
  • 9Choi Y S,Kim E H. On the existence of positive solution of quasilinear elliptic boundary value problems[J]. Journal of Differential Equations, 1999,155 :423-442. 被引量:1
  • 10Cirstea F S, Radulescu V D. Existence implies unique- ness for singular anisotropic elliptic boundary-value problems[J]. Mathematical Method in the Applied Sci- ences, 2001,24 .. 771-779. 被引量:1

同被引文献12

  • 1Zhonghai Xu, Jiashang Zheng, Zhengguo Feng. Existence and regularity of nonnegative solution of a singular quasi- linear anisotropic boundary value problem with gradient terms[ J]. Nonlinear Analysis TMA ,2011,74 (3) :739-756. 被引量:1
  • 2A. Nachman and A. Callegari. A nonlinear singlar boundary value problem in the theory of pseudoplastic fluids[ J]. SIAM J. Appl. Math. 1986,38(2) :275-281. 被引量:1
  • 3C A. Stuart. Existence theorems for a class of nonlinear integral equations[ J]. Math. Z. , 1974,137( 1 ) :49-66. 被引量:1
  • 4S. D. Taliaferro. A nonlinear singlar boundary value problem [ J ]. Nonlinear Analysis TMA, 1979,3 (6) :897-904. 被引量:1
  • 5Zhang Zhijun, Jiangang Chen, Existence and optimal estimates of solution for singular nonlinear Dirichlet problems [ J ], Nonlinear Anal 2004,57 ( 3 ) :473-484. 被引量:1
  • 6Lin Changshou;Tso Kaising, On regular solutions of second order degenerate elliptic-parabolic equations [ J ]. Comm. P. D. E. , 1990,15 (9) :1329-1360. 被引量:1
  • 7Y. S. Choi, A. C. Lazer, P. J. McKenna, On a singular quasilinear anisotropic elliptic boundary value problem [ J ]. Trans. A. M. S. , 1995,347 (7) :2633-2641. 被引量:1
  • 8Y. S. Choi, and P. J. McKenna, A singular quasilinear anisotropic elliptic boundary value problem II[ J ]. Trans. A. M. S., 1998,350 (8) : 2925 -2937. 被引量:1
  • 9F. St. Cirstea,and V. D. Radulescu, Existence implies uniqueness for a class of singular anisotropic elliptic boundary-value problems [ J 1. Mathematical Method in the Applied Sciences ,2001,24( 11 ) :771-779. 被引量:1
  • 10徐中海,郑甲山,冯振国.具有相异奇性的拟线性边界退化椭圆边值问题正解的存在性及正则性[J].吉林大学学报(理学版),2010,48(4):567-573. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部