期刊文献+

基于滚动时间窗的动态协同过滤推荐模型及算法 被引量:9

Dynamic Collaborative Filtering Recommender Model Based on Rolling Time Windows and its Algorithm
下载PDF
导出
摘要 为了提高传统的协同过滤推荐系统的性能,首次提出了考虑时序性的基于滚动时间窗的用户-项目-时间三维动态模型,并在此基础上研究了针对该模型的协同过滤推荐算法。该模型算法对不同时间的兴趣评分按时间序列处理,用户兴趣相似度由不同时间段的分量组合而成,提高了算法的时效性;进而推导出了该模型的增量算法,利用增量算法减少了计算相似度的时间复杂度,从而提高了算法的扩展性;最后设计了合理的实验,实验结果表明提出的三维动态模型及算法在命中率性能上优于传统的二维协同过滤推荐模型及算法。 For improving the performance of the traditional collaborative filtering recommender system, a dynamic user item-time thre^dimensional model based on rolling time windows was proposed, which considers the time sequence problem. Then a special collaborative filtering (CF) algorithm was explored to work with the model. The interest scores at different times are regarded differently according to the time sequence and the similarities between users are com- posed of components at different times, which increases the timeliness of the algorithm. In addition, the similarities can also be calculated quickly by an incremental formula deduced in this paper so as to improve the scalability of the algo- rithm At last, some reasonable experiments show that the model and algorithm presented in this paper outperform the traditional 2D collaborative filtering model and algorithm in terms of the hit rate.
作者 沈键 杨煜普
出处 《计算机科学》 CSCD 北大核心 2013年第2期206-209,共4页 Computer Science
基金 国家高技术研究发展计划(863计划)项目(2011AA040605)资助
关键词 滚动时间窗 协同过滤 用户-项目-时间三维模型 推荐算法 时间序列 增量算法 Rolling time windows, Collaborative filtering, User-item-time 3D model, Recommender algorithm, Time sequences, Incremental algorithm
  • 相关文献

参考文献11

  • 1Liu Bing. Web Data Mining[M].Springer-Verlag,2006. 被引量:1
  • 2康雨洁..基于协同过滤的个性化社区推荐方法研究[D].中国科学技术大学,2011:
  • 3李可潮.基于访问时间和评分时间的协同过滤算法研究[D]南宁:广西大学,2010. 被引量:1
  • 4邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:147
  • 5Strunjas S. Algorithms and models for collaborative filtering from large information corpora[D].Cincinnati:University of Cincinnati,2008. 被引量:1
  • 6Leung W K C.Enriching user and item profiles for collaborative filtering:from concept hierarchies to user-generated reviews[D]香港:香港理工大学,2008. 被引量:1
  • 7项亮..动态推荐系统关键技术研究[D].中国科学院大学,2011:
  • 8Achary R R. An author recommender system using both content-based and collaborative filtering methods[D].Northridge:California State University,2011. 被引量:1
  • 9France S. Distance metrics for high dimensional nearest neighborhood recovery[J].Compression and normalization Elsevier Science,2011,(01):92-100. 被引量:1
  • 10Pan Wei-ke,Xiang E W,Liu N N. Transfer Learning in Collaborative Filtering for Sparsity Reduction[A].2010.230-235. 被引量:1

二级参考文献10

  • 1J Schafer,J Konstan,J Riedl.Recommender systems in e-commerce[C].In:Proc of ACM E-Commerce.New York:ACM Press,1999.158-166 被引量:1
  • 2Champa Jayawardana,K Priyantha Hewagamage Masashito HIrakawa.A personalize information environment for digital libraries[J].Information Technology and Libraries,2001,20(4):185-196 被引量:1
  • 3J Konstan,B Miller,D Maltz,et al.GroupLens:Applying collaborative filtering to Usenet news[J].Communications of the ACM,1997,40(3):77-87 被引量:1
  • 4高凤荣.个性化推荐系统关键技术研究:[博士论文][D].北京:中国人民大学,2003 被引量:2
  • 5Greg Linden,Brent Smith,Jeremy York.Amazon.com recommendations:Item-to-Item collaborative filtering[J].IEEE Internet Computing,2003,7(1):76-80 被引量:1
  • 6G Adomavicius,A Tuzhilin.Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions[J].IEEE Trans on Knowledge and Data Engineering,2005,17(6):734-749 被引量:1
  • 7Chun Zeng,Chun-Xiao Xing,Li-Zhu Zhou,et al.Similarity measure and instance selection for collaborative filtering international[J].Journal of Electronic Commerce,2004,4(8):115-129 被引量:1
  • 8G Karypis.Evaluation of item-based top-N recommendation algorithms[C].In:Proc of CIKM 2001.New York:ACM Press,2001.247-254 被引量:1
  • 9Brendan Kitts,David Freed,Martin Vrieze.Cross-sell:A fast promotion-tunable customer-item recommendation method based on conditional independent probabilities[C].In:Proc of ACM SIGKDD Int'l Conf.New York:ACM Press,2000.437-446 被引量:1
  • 10KDD2000 Dataset[OL].http://www.ecn.purdue.edu/KDDCUP/data/,2005 被引量:1

共引文献146

同被引文献82

引证文献9

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部