期刊文献+

基于数据的一类部分未知仿射非线性系统近似解 被引量:2

Data-based Approximate Solution for a Class of Affine Nonlinear Systems with Partially Unknown Functions
下载PDF
导出
摘要 针对一类部分未知仿射非线性系统无穷区间求解问题,利用在线采样数据,提出了在线无偏最小二乘支持向量机(Least square support vector machines,LS-SVM)的方法.首先,通过引入一个参数消除了LS-SVM的偏置项,避免了冗余计算,同时在优化目标中引入权值函数,对靠近当前时刻的数据样本点赋予更高权重,提高了计算精度;其次,采用滚动时间窗的方法,实现非线性系统无穷区间求解,并满足求解实时性要求;最后,通过数值算例仿真验证了本文方法的有效性和优越性. A new method named online unbiased least square support vector machines (LS-SVMs) is proposed by using online sampling data to find the approximate solution of a class of partially unknown affine nonlinear systems within the infinite interval. Firstly, we eliminate the bias of LS-SVMs by introducing a parameter to avoid redundant computation, meanwhile, we give the data points which are closer to the current moment more weights by introducing a weight function to the optimized target, thus the computational accuracy is improved. Secondly, the method of sliding time window is employed to achieve the approximate solution for affine nonlinear systems within the infinite interval and meet the requirement of real-time solving. Finally, simulations of numerical examples demonstrate the efficiency and superiority of the proposed method.
出处 《自动化学报》 EI CSCD 北大核心 2015年第10期1745-1753,共9页 Acta Automatica Sinica
基金 国家自然科学基金(61074088 61473202)资助~~
关键词 仿射非线性系统 数据驱动控制 最小二乘支持向量机 滚动时间窗 机器学习 Affine nonlinear system, data-driven control, least square support vector machines (LS-SVM), sliding timewindow, machine learning
  • 相关文献

参考文献21

  • 1Mohaqeqi M, Kargahi M, Dehghan M. Adaptive scheduling of real-time systems cosupplied by renewable and nonrenewable energy sources. ACM Transactions on Embedded Computing Systems (TECS), 2013, 13(1s): Article No.36. 被引量:1
  • 2Yao W, Jiang L, Fang J K, Wen J Y, Cheng S J. Decentralized nonlinear optimal predictive excitation control for multi-machine power systems. International Journal of Electrical Power & Energy Systems, 2014, 55: 620-627. 被引量:1
  • 3Qi G Y, Chen Z Q, Yuan Z Z. Adaptive high order differential feedback control for affine nonlinear system. Chaos, Solitons & Fractals, 2008, 37(1): 308-315. 被引量:1
  • 4Khan Z H, Gu I Y H. Nonlinear dynamic model for visual object tracking on Grassmann manifolds with partial occlusion handling. IEEE Transactions on Cybernetics, 2013, 43(6): 2005-2019. 被引量:1
  • 5Ramos J I. Linearization techniques for singular initial-value problems of ordinary differential equations. Applied Mathematics and Computation, 2005, 161(2): 525-542. 被引量:1
  • 6Odibat Ζ Μ, Momani S. Application of variational iteration method to nonlinear differential equations of fractional order. International Journal of Nonlinear Sciences and Numerical Simulation, 2006, 7(1): 27-34. 被引量:1
  • 7Johnson C. Numerical Solution of Partial Differential Equations by the Finite Element Method. Courier Corporation, 2012. 被引量:1
  • 8Duan J S, Rach R, Baleanu D, Wazwaz A M. A review of the Adomian decomposition method and its applications to fractional differential equations. Communications in Fractional Calculus, 2012, 3(2): 73-99. 被引量:1
  • 9Mall S, Chakraverty S. Numerical solution of nonlinear singular initial value problems of Emden-Fowler type using Chebyshev neural network method. Neurocomputing, 2015, 149: 975-982. 被引量:1
  • 10侯忠生,许建新.数据驱动控制理论及方法的回顾和展望[J].自动化学报,2009,35(6):650-667. 被引量:213

二级参考文献30

共引文献282

同被引文献6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部