摘要
研究Clifford分析中超正则函数一类带共轭值带位移的非线性边值问题,根据超正则函数的拟Cauchy型积分和Plemelj公式,利用积分方程理论和Schauder不动点原理证明了非线性边值问题:W+(t)=G1(t)W-(t)+G2(t)W-(d(t))+g(t).f t,W+(t),W-(t),W-((d(t)))解的存在性,并给出了解的积分表示式.
Nonlinear boundary value problems with conjugate and shift for hypermonogenic functions in Clifford a nalysis were investigated. By applying Quasi - Cauchy's type integral and Plemelj formula and using the integral equation and the Schauder fixed point theorem, the paper proved the existence of the solutions to boundary value problemsW^+(t)=G1(t)W^-(t)+G2(t)W^-(d(t))+g(t)·f(t,W^+(t),W^-(t),W^-(d(t))))for hypermonogenic functions in Clifford analysis, and obtained the integral representations of the solutions.
出处
《云南民族大学学报(自然科学版)》
CAS
2013年第1期54-56,共3页
Journal of Yunnan Minzu University:Natural Sciences Edition