期刊文献+

基于Chebyshev多项式的公钥系统 被引量:3

Cryptosystem Based on Chebyshev Polynomials
下载PDF
导出
摘要 通过对2种已提出的基于有限域上Chebyshev映射的公钥方案的研究,发现这2个方案的共同问题,通过改变参数选取的条件和增加逆元存在的条件,给出了改进的公钥加密方案,并对改进后方案的合理性、可行性和安全性进行分析,给出了快速实现的算法。 Through study on the two existing public key cryptosystems based on Chebyshev mapping over the finite field, their common problems were found. The improved public key cryptosystems program was proposed by changing the parameter selection conditions and adding the inverse element existence conditions. The ration- ality, practicability and security of the improved program were investigated, and the algorithm for fast imple- mentation was given.
出处 《铁道学报》 EI CAS CSCD 北大核心 2013年第1期77-79,共3页 Journal of the China Railway Society
基金 国家自然科学基金项目(11071062) 湖南省科技计划(2009FJ3197)
关键词 CHEBYSHEV多项式 半群性 公钥系统 混沌映射 chebyshev polynomials semi-group property public key cryptosystem chaotic mapping
  • 相关文献

参考文献8

二级参考文献47

  • 1王大虎,魏学业,柳艳红.Chebyshev多项式的公钥加密和身份认证方案的研究[J].北京交通大学学报,2005,29(5):40-42. 被引量:5
  • 2刘亮,刘云,宁红宙.公钥体系中Chebyshev多项式的改进[J].北京交通大学学报,2005,29(5):56-59. 被引量:11
  • 3王大虎,魏学业,李庆九,柳艳红.基于Chebyshev多项式的公钥加密和密钥交换方案的改进[J].铁道学报,2006,28(5):95-98. 被引量:3
  • 4Kocarev L, Makraduli J, Amato E Public-key Encryption Based on Chebyshev Maps[C]//Proceedings of the International Symposium on Circuits and Systems. [S. l.]: IEEE Press, 2003. 被引量:1
  • 5Kocarev L, Sterjev M, Fekete A, et al. Public-key Encryption with Chaos[J]. Chaos, 2004, 14(4): 1078-1082. 被引量:1
  • 6Bergamo P, D'Aroc P, De Santis A, et al. Security of Public Key Cryptosystems Based on Chebyshev Polynomials[C]//Proceedings of the International Symposium on Circuits and Systems. [S. l.]: IEEE Press, 2005, 被引量:1
  • 7Zhao Geng, Chen Guanrong, Lu Fangfang. Analysis of Some Recently Proposed Chaos-based Public Key Encryption Algorithms[C]//Proc. of 2006 International Conference on Communicationsl Circuits and Systems. [S. l.]: IEEE Press, 2006. 被引量:1
  • 8[1]Dickson L E.The Analytic Representation of Substitutions on a Power of a Prime Number of Letters with a Discussion of the Linear Group.Ann of Math,1896/97,11(1):65~120,161~183 被引量:1
  • 9[2]Lidl R,Mullen G L,Turnwald G.Dickson Polynomials,Pitman Monographs in Pure and Applied Mathematics.New York:John Wiley & Sons Inc,1993.1~78 被引量:1
  • 10[3]Schur I.Arithmetisches uber die Tschebyscheffschen Polynome,ges.Abhandlungen,Berlin,New York:Springer-Verleg,1973.422~453 被引量:1

共引文献18

同被引文献13

  • 1KOEAREV L, MAKRADULI J, AMATO P. Public - key encryption based on chebyshev polynomials [J]. Circuits, Systems and Signal Processing ,2005,24 (5): 497 - 517. 被引量:1
  • 2BOSE R. Novel public key encryption technique based on multiple chaotic systems [ J ]. Physical review let- ters,2005,95 (9) :098702. 被引量:1
  • 3WANG Kai, PEI Wen-jiang, ZHOU Liu-hua, et al. Se- curity of public key encryption technique based on multiple chaotic system [ J ]. Physics letters A, 2006, 360(2) :259 -262. 被引量:1
  • 4XIAO Di, LIAO Xiao-feng, DENG Shao-jiang. A novel key agreement protocol based on chaotic maps[ J ]. In- formation Sciences, 2007,177 ( 4 ) : 1136 - 1142. 被引量:1
  • 5HAN Song. Security of a key agreement protocol based on chaotic maps [ J ]. Chaos, Solitons & Fractals,2008, 38(3) : 764 -768. 被引量:1
  • 6WANG Xing-yuan, ZHAO Jian-feng. An improved key agreement protocol based on chaos [ J ]. Communica- tions in Nonlinear Science and Numerical Simulation, 2010, 15(12) : 4052 -4057. 被引量:1
  • 7MENEZES A J, VAN OORSCHOT P C, Vanstone S A. Handbook of applied cryptography [ M ]. New York : CRC Press, 2010. 被引量:1
  • 8MULLER S. On the Computation of square roots in fi- nite fields [ J ]. Designs, Codes and Cryptography, 2004,31(3) : 301 -312. 被引量:1
  • 9陈宇,韦鹏程.基于实数域扩散离散Chebyshev多项式的公钥加密算法[J].计算机科学,2011,38(10):121-122. 被引量:3
  • 10方洁,姜长生,邓玮.混沌修正函数投影同步研究及其在保密通信中的应用[J].郑州大学学报(工学版),2011,32(5):61-65. 被引量:3

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部