期刊文献+

二项风险模型中破产概率上界的估计

Estimation of upper bound for ruin probability in the binomial risk model
下载PDF
导出
摘要 目的对二项风险模型中的破产概率的指数上界进行了有效估计。方法主要运用离散的5阶凸随机序的极值分布的理论。结果在离散的5阶凸随机序意义下,获得了破产概率的指数上界的估计。结论模拟结果非常接近精确的指数上界。 Aim To effectively estimate the exponential upper bound of ruin probability in the bi- nomial risk model. Method The extremal theory of the discrete 5-convex stochastic order was mainly used for the abovementioned aim. Result The estimation of the exponential upper bound of ruin probability in the sense of discrete 5-convex was obtained. Conclusion Simulation results were very close to the accurate exponential upper bound.
作者 田有功
出处 《宝鸡文理学院学报(自然科学版)》 CAS 2012年第4期21-23,共3页 Journal of Baoji University of Arts and Sciences(Natural Science Edition)
关键词 5阶凸随机序 极值分布 破产概率 Lundberg调整系数 5-convex stochastic order extreme value distribution ruin probability Lundberg' sadjustment coefficient
  • 相关文献

参考文献8

  • 1Hansj(o)rg Albrecher,Sandra Haas. Ruin theory with excess of loss reinsurance and reinstatements[J].Applied Mathematics and Computation,2011,(20):8031-8043. 被引量:1
  • 2Denuit M,Lefèvre Cl. On s-convex stochastic extreme for arithmetic risks[J].Insurance:Mathematics and Economics,1999.143-155. 被引量:1
  • 3Courtois CI,Denuit M,Sebastien Van Bellegem. Discrete s-convex extremal distributions:Theory and applications[J].Applied Mathematics Letters,2006.1367-1377. 被引量:1
  • 4TIAN You-gong;JIAO Gui-mei.Extremal Distribution for the Discrete 5-convex Stochastic Ordering and Applications[A]北京:北京理工大学出版社,2011809-816. 被引量:1
  • 5KASS R,Van Heerwaarden A E. Ordering of risks and ruin probabilities[J].Insurance:Mathematics and Economocs,1990,(2-3):177-178. 被引量:1
  • 6KASS R,Van Heerwaarden A E,GOOVAERTS M J. Ordering of Actuarial Risks[M].Brussels:CAIRE,1994. 被引量:1
  • 7Shiu E S W. The probability of eventual ruin in the compound binomial model[J].Astin Bulletin,1989,(02):179-190. 被引量:1
  • 8Willmot G E. Ruin probabilities in the compound binomial model[J].Insurance:Mathematics and Economocs,1993,(03):133-142. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部