期刊文献+

基于Phong模型的多幅图像SFS算法研究 被引量:1

Research on Algorithm of SFS for Multi-images Based on Phong Model
下载PDF
导出
摘要 三维形状恢复是计算机视觉领域的热点之一。目前基于Shape-From-Shading(SFS)的三维形状恢复方法采用描述漫反射的Lambertian模型,其数学形式简单,但重构结果与实际有较大差距。文中提出了一种基于Phong模型的多幅图像SFS三维形状恢复算法,该模型是一种典型的描述镜面反射的非Lambertian模型。首先由摄象机获得单目三幅不同光源位置的图像。然后求解由Phong模型描述的三个反射图方程,得到物体表面梯度向量。进一步利用灰度约束和梯度分量约束条件构造目标泛函,建立相应的Eulor-Poision方程并采用离散差分近似微分运算,得到物体表面三维形状恢复的迭代算法。提出的算法利用三幅图像的灰度值建立方程组,求得唯一确定的表面梯度数值,解决了传统单幅图像恢复三维形状的病态问题。同时基于非Lambertian模型建立反射图方程,可对含有镜面反射的表面进行三维形状恢复。最后通过仿真实验说明算法的有效性。 Three-dimensional (3-D) shape reconstruction is one of the main problems in the field of computer vision. Most existing Shape-From-Shading (SFS) methods are based on the Lambertian reflectance model. The mathematical form of Lambertian reflectance model is simple,but reconstruction results of corresponding algorithms are relative poor compared with real 3-D shape of surfaces. New SFS algorithm based on the Phong model to reconstruct 3D shape of surface is proposed in this paper. The Phong model is a typicai kind of non-Lambertian model to describe specular reflection. Three images with different light source directions are captured by camera first- ly. Following three reflectance map equations which are described by Phong model are established. Then the gradient vectors of the 3-D surface are calculated by solving the equations. The gray constraint and gradient component constraint conditions are used to construct tar- get function, and the corresponding Eulor-Poision equations are derived. Simultaneously, discrete difference is used to approximate differ- entiai operation. New iterative 3-D shape reconstruction algorithm is proposed by the discrete difference equation. Three pixels values are used to solve certain gradient value in this method. So the ill-posed problem in traditional SFS which solves a single reflectance map e- quation can be avoided. At the same time, the algorithm solves the reflectance map equations which based on non-l,ambertian model. So the proposed method can reconstruct 3D shape of surface containing specular reflection. At last, experimental results of 3-D reconstruction show that the proposed method is effective.
作者 张宁 杨磊
出处 《计算机技术与发展》 2013年第1期9-12,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(61005015) 上海高校青年教师培养资助计划项目
关键词 PHONG模型 三维重建 SHAPE-FROM-SHADING 反射图方程 Phong model 3-D shape reconstruction Shape-From-Shading reflection map equation
  • 相关文献

参考文献12

  • 1Wu C ,Srinivasa G N ,Jaramaz B. A multi-image shape-from- shading framework for near-lighting perspective endoscopes [ J ]. International Jouroal of Computer Vision, 2010,86 ( 2 ) : 211-228. 被引量:1
  • 2William A P, Hancock S R E. Estimating facial reflectance properties using shape-from-shading[J]. International Journal of Computer Vision, 2010.86 ( 2 ) : 152-170. 被引量:1
  • 3Lee M, Choi C H. Facial shape recovery from a single image with an arbitrary directional light using linearly independent representation[C]//ISVC 2009. [s. l. ] :[s. n. ] ,2009:740- 749. 被引量:1
  • 4Stephan W, Anita S, Ole S, et al. Image-based Lunar surface reconstruction[C]//DAGM 2009. [ s. l. ]: [ s. n. ] ,2009:382 -391. 被引量:1
  • 5Horn B K. Numerical shape from shading and occluding boundaries [ J ]. Artificial Intelligence, 1981,17 ( 1 -3 ) : 141 - 184. 被引量:1
  • 6Horn B K. Height and gradient from shading[ J ]. Int J of Computer Vision, 1990,5 ( 1 ) :37-75. 被引量:1
  • 7Zhang R, Tsai P S, Cryer J E,et al. Shape from shading: a survey[J]. IEEE Trans. on PAMI,1999,21 (8) :690-706. 被引量:1
  • 8Durou J D, Falcone M, Sagona M. Numerical methods for shape-from - shading: a new survey with benchmarks [ J ]. Computer Vision and Image Understanding,2008,109 ( 1 ) :22 -43. 被引量:1
  • 9Rouy E, Tourin A. A viscosity solutions approach to shape-from-shading[J]. SIAM Journal of Numerical Analysis, 1992, 29 ( 3 ) : 867- 884. 被引量:1
  • 10Lee K M,Kuocc J. Shape from shading with a linear triangular element surface model [ J ]. IEEE Trans on PAMI, 1993,15 (8) :815-822. 被引量:1

二级参考文献17

共引文献18

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部