期刊文献+

一种基于SURF的图像特征点快速匹配算法 被引量:21

A fast algorithm of image feature points matching based on SURF
下载PDF
导出
摘要 针对传统图像匹配算法计算量大、耗时长等缺陷,提出一种基于SURF(speeded up robust features)的图像特征点快速匹配算法.首先对图像采用SURF算法提取特征点;然后通过Haar小波变换确定特征点的主方向和特征点描述子,使用优化的最近邻搜索算法(best bin first,BBF)进行特征点匹配;最后根据实际需要选取相似度最高的前n对匹配点进行对比实验.实验结果表明:该算法鲁棒性强,速度快,匹配准确性高,具有较大的应用价值. With the shortcomings of the large calculation amount and long time consuming in the conventional image feature matching algorithms, a fast algorithm based on SURF (speeded up robust features) for image matching is presented in this paper. Firstly, exact feature points using SURF algorithm are extracted. For each feature point, the dominant orientation is assigned by com- puting Haar wavelet responses, and then the descriptors are generated. The feature points are matched using the optimized nearest neighbor search algorithm (best bin first, BBF). Contrast experiment is carried out according to the actual need to select n most similar matchings. The results show that this algorithm meets the requirements of accuracy with a small amount of calculation and fast speed advantage.
出处 《扬州大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第4期64-67,共4页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(51273172)
关键词 图像匹配 特征点 SURF(speeded up robust features) 最近邻搜索算法 image matching feature point speeded up robust features nearest neighbor search algorithm
  • 相关文献

参考文献10

  • 1SCHMID C, MOHR R, BAUCKHAGE C. Evaluation of interest point detectors [J]. Int J Comput Vision, 2000, 37(2): 151-172. 被引量:1
  • 2周爱军,杜宇人.基于视频图像Harris角点检测的车型识别[J].扬州大学学报(自然科学版),2008,11(1):67-70. 被引量:9
  • 3LOWED G. Distinctive image features from seale-invariant keypoints [J]. Int J Comput Vision, 2004, 60(2) : 91-110. 被引量:1
  • 4MIKOLAJCZYK K, SCHMID C. A performance evaluation of local descriptors [J[. IEEE Trans Pattern Anal Maeh Intell, 2005, 27(10): 1615-1630. 被引量:1
  • 5BASTANI.AR Y, TEMIZEL A, YARDIMCI Y. Improved SIFT matching for image pairs with scale difference [J]. Electron Lett, 2010, 46(5): 346-348. 被引量:1
  • 6YAN K, SUKTHANKAR R. PCA-SIFT: a more distinctive representation for local image descriptors [-C]// Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattren Recognition. Wash- ington, DC, USA: IEEE, 2004, 2: 506-513. 被引量:1
  • 7DELPONTE E, ISGRO F, ODONE F, et al. SVD-matching using SIFT features [J]. Graph Models, 2006, 68(5/6) : 415-431. 被引量:1
  • 8BAY H, TUYTELAARS T, VAN GOOL L. SURF: speeded up robust features [J]. Comput Vision Im Un- derstanding, 2008, 110(3): 346-359. 被引量:1
  • 9熊智,陈方,王丹,刘建业.SAR/INS组合导航中基于SURF的鲁棒景象匹配算法[J].南京航空航天大学学报,2011,43(1):49-54. 被引量:9
  • 10杨敏,沈春林.基本矩阵随机采样鲁棒估计[J].应用科学学报,2004,22(2):178-182. 被引量:12

二级参考文献31

  • 1张培良,许录平.基于Hausdorff距离的多分辨率目标跟踪方法[J].量子电子学报,2005,22(1):25-29. 被引量:5
  • 2冷雪飞,刘建业,熊智,邢广华.加权Hausdorff距离算法在SAR/INS景象匹配中的应用[J].控制与决策,2006,21(1):42-45. 被引量:16
  • 3Stephen S,Lowe D G,Little J.Vision-based global localization and mapping for mobile robots[J].IEEE Transactions on Robotics,2005,21(3):364-375. 被引量:1
  • 4Bay H,Ess A,Tuytelaars T,et al.Speeded-up robust features(SURF)[J].Computer Vision and Image Understanding,2008,7(3):346-359. 被引量:1
  • 5Kim D,Dahyot R.Face components detection using SURF descriptors and SVMs[C]//The Proceedings of IEEE International Machine Vision and Image Processing Conference.Portrush,U K:IEEE,2008:51-56. 被引量:1
  • 6Oconaire C,Blighe M,Oconno N.SenseCam image localisation using hierarchical SURF trees[J].Springer-Verlag Berlin Heidelberg,2009,9(1):15-26. 被引量:1
  • 7Gossow D,Pellenz J,Paulus D.Danger sign detection using color histograms and SURF matching[C]//IEEE International Workshop on Safety,Security and Rescue Robotics.Tohoku,Japanese:IEEE,2008,3(1):13-18. 被引量:1
  • 8Zhang Zhanyu,Huang Yalou,Li Chao,et al.Monocular vision simultaneous localization and mapping using SURF[C]//World Congress on Intelligent Control and Automation.Chongqing,China:[s.n.],2008,5(11):1651-1656. 被引量:1
  • 9Fischler M,Bolles R C.Random sample consensus:a paradigm for model fitting and automatic cartography[J].Comm ACM,1981,24(6):381-395. 被引量:1
  • 10Lowe D G.Object recognition from local scale-invariant features[C]//The Proceedings of IEEE International Conference on Computer Vision.Corfu,Greece:[s.n.],1999:1150-1157. 被引量:1

共引文献27

同被引文献142

引证文献21

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部