期刊文献+

免疫万有引力搜索算法的研究与仿真 被引量:6

Research and Simulation of the Gravitational Search Algorithms with Immunity
下载PDF
导出
摘要 受生物体免疫系统免疫机制的启发,利用免疫信息处理机制来改善万有引力搜索算法(gravitational search algorithm,GSA)的局部优化性能,提出了免疫GSA.该算法结合了GSA全局寻优能力和免疫系统免疫信息处理机制的优点,并且实现简单,改善了GSA摆脱局部极值点的能力,提高了算法进化过程中的收敛速度和精度。通过仿真算例对提出的算法进行了验证,结果表明:提出的免疫GSA的性能优于原GSA. Inspired by the immune mechanism of organisms immune system,the local optimize performance of gravitational search algorithm(GSA) was improved by the immune information processing mechanism,and the GSA with immunity was proposed.The proposed algorithms have both the advantages of the original GSA and the immune information processing mechanism of immune system,which can improve the abilities of seeking the global excellent result and evolution speed.The computer simulation result in examples demonstrates that the proposed algorithms are superior to the original GSA.
出处 《兵工学报》 EI CAS CSCD 北大核心 2012年第12期1533-1538,共6页 Acta Armamentarii
关键词 系统工程 免疫万有引力搜索算法 免疫记忆 疫苗接种 system engineering gravitational search algorithm with immunity immune memory vaccination
  • 相关文献

参考文献8

  • 1Rashedi Esmat, Nezamabadi-pour Hossein,Saryazdi Saeid. GSA : a gravitational search algorithm [ J ]. Information Sciences, 2009, 179:2232 - 2248. 被引量:1
  • 2谷文祥,李向涛,朱磊,周俊萍,胡艳梅.求解流水线调度问题的万有引力搜索算法[J].智能系统学报,2010,5(5):411-418. 被引量:23
  • 3Dasgupta D. Artificial immune systems and their applications [ M ]. Berlin : Springer-Verlag, 1999. 被引量:1
  • 4De Castro, Von Zuben. Artificial immune systems: part I-basic theory and applications [ EB/OL ]. ( 1999 - 06 - 08 ) [ 2011 - 10 - 05 ]. ftp ://ftp. dca. fee. unicamp, br/pub/does/vouzuben/trdca/trdca0199, pdf. 被引量:1
  • 5De Castro,Von Zuben. Artificial immune systems: part-II-A sur- vey of applications[EB/OL]. (2000 -01 -06) [2011 - 11 - 03]. ftp: //ftp. dca. fee. unitcamp, br/pub/docs/vonzuben/tr_ dca/trdca0200, pdf. 被引量:1
  • 6Gang Ln,De-jian Tan. fmprovcmcnt on regulating defnition of an- tibody density of immune algorithm [ C ]//Proceedings of the 9th international conference on neural information processing. Hong Kong:ICONIP, 2002: 2659- 2672. 被引量:1
  • 7Yao X, Liu Y, Lin G. Evolutionary programming made faster[ J ]. IEEE Transactions on Evolutionary Computation, 1999,3 (2) : 82 - 102. 被引量:1
  • 8杨晶,黎放,狄鹏.舰艇编队保障系统的备件短缺风险研究[J].系统工程与电子技术,2012,34(4):743-748. 被引量:6

二级参考文献32

  • 1瞿红春,孙春林.一种基于航材系统保障率的备件可靠性模型[J].航空维修与工程,2004(3):50-51. 被引量:8
  • 2CROCE F D, NARAYAN V, TADEI R. The two-machine total completion time flow shop problem[ J]. European Journal of Operational Research, 1996, 90 : 227-237. 被引量:1
  • 3CROCE F D, GHIRARDI M, TADEI R. An improved branch-and-bound algorithm for the two machine total completion time flow shop problem [ J ]. European Journal of Operational Research, 2002, 139: 293-301. 被引量:1
  • 4PALMER D S. Sequencing jobs through a multistage process in the minimum total time: a quick method of obtaining a near-optimum [ J ]. Operational Research Quarterly, 1965, 16: 101-107. 被引量:1
  • 5GUPTA J N D. Heuristic algorithms for multistage flowshop scheduling problem [ J ]. AIIE Transactions, 1972, 4 : 11- 18. 被引量:1
  • 6KUO Ihong, HORNG Shijinn, KAO Tzongwann, et al. An efficient flow-shop scheduling algorithm based on a hybrid particle swarm optimization model [ J ]. Lecture Notes in Computer Science, 2007, 4570: 303-312. 被引量:1
  • 7LIAN Zhigang, GU Xingsheng, JIAO Bin. A novel particle swarm optimization algorithm for permutation flow-shop scheduling to minimize makespan [ J ]. Chaos, Solitons and Fractals, 2008, 35: 851-86I. 被引量:1
  • 8RASHEDI E, NEZAMABADI-POUR H, SARYAZDI S. GSA: a gravitational search algorithm[J]. Information Science, 2009, 179(13) : 2232-2248. 被引量:1
  • 9CARLIER J. Ordonnancements a contraintes disjonctives [J].RAIRO Recherche Operationelle, 1978, 12: 333- 351. 被引量:1
  • 10REEVES C R, YAMADA T. Genetic algorithms, path relinking and the flowshop sequencing problem [ J]. Evolutionary Computation, 1998, 6( 1 ) : 45-60. 被引量:1

共引文献27

同被引文献60

  • 1杨艳玲,张远利.钢铁企业原料物流信息系统的设计与开发[J].物流技术,2005,24(4):65-67. 被引量:1
  • 2段海滨.蚁群算法原理及其应用[M].北京:科学出版社,2006:33-35. 被引量:32
  • 3岳超源.决策理论与方法[M].北京:科学出版社,2006. 被引量:33
  • 4李悦乔,康立山,李程俊.求解TSP问题的实数编码演化算法[J].计算机工程与设计,2007,28(19):4592-4594. 被引量:7
  • 5江铭炎,袁东风.人工鱼群算法及其应用[M].北京:科学出版社,2012. 被引量:45
  • 6郭文忠,陈国龙.离散粒子群优化算法及其应用[M].北京:清华大学出版社,2012. 被引量:18
  • 7Krishnanand K N,Ghose D.Detection of Multiple Source Locations Using a Glowworm Metaphor with Applications to Collective Robotics[C]//Proc.of Swarm Intelligence Symposium.[S.1.]:IEEE Press,2005:84-91. 被引量:1
  • 8Kennedy J.Particle Swarm Optimization[C]//Proc.of IEEE International Conference on Neural Networks.Perth,Australia:IEEE Press,2010:760-766. 被引量:1
  • 9Rashedi E,Nezamabadi-Pour H,Saryazdi S.GSA:A Gravitational Search Algorithm[J].Information Sciences,2009,179 (13):2232-2248. 被引量:1
  • 10Li Chaoshun,Zhou Jianzhou.Parameters Identification of Hydraulic Turbine Governing System Using Improved Gravitational Search Algorithm[J].Energy Conversion and Management,2011,52 (1):374-381. 被引量:1

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部