期刊文献+

基于模糊多目标规划的防空反导火力分配 被引量:14

WTA for air and missile defense based on fuzzy multi-objective programming
下载PDF
导出
摘要 针对现有多目标火力分配(weapon target assignment,WTA)方法很难适用于不确定情况下防空反导作战的问题,提出了基于模糊多目标规划的防空反导WTA方法。首先,采用三角模糊数刻画不确定的目标威胁度,在考虑防空反导作战特点的基础上,基于模糊多目标规划建立了WTA模型;然后,根据必要性测度原理将含有模糊参数的目标函数进行了等价清晰化;接着,提出了具有单/双势阱的多目标量子行为粒子群算法用于求解WTA模型,该算法采用了单/双势阱位置更新方式、粒子混合随机变异方法、领导粒子两阶段选取方法;最后,通过实例仿真验证了模型的合理性和算法的有效性。 Given that the multi-objective optimization based weapon target assignment(WTA)methods have difficulty in resolving WTA problems in air and missile defense operation under uncertainty,a WTA method for air and missile defense based on fuzzy multi-objective programming is proposed.Firstly,the uncertain target threat is measured with application of triangular fuzzy number,and the air and missile defense WTA model is constructed based on fuzzy multi-objective programming with consideration of air and missile defense combat's characteristics.Secondly,the objective function with fuzzy parameters is turnned into a certain objective function based on necessity degree principle of uncertain theory.Thirdly,A multi-objective quantum-behaved particle swarm optimization with the double/single-well(MOQPSO-D/S)algorithm is proposed to solve the WTA model,where the particle location update method with double/single well,the hybrid random mutation method and a two-stage guider particles selection method are applied.Finally,the model constructed in this paper is proved to be reasonable,and the MOQPSO-D/S algorithm is proved to be efficient through example simulation.
作者 徐浩 邢清华 王伟 XU Hao;XING Qinghua;WANG Wei(School of Air and Missile Defense, Air Force Engineering University, Xi ' an 710051, China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2018年第3期563-570,共8页 Systems Engineering and Electronics
基金 国家自然科学基金(71771216 71701209 71501184 61603410)资助课题
关键词 火力分配(weapon target assignment WTA) 模糊多目标规划 量子行为粒子群 多目标优化 不确定 weapon target assignment (WTA) fuzzy multi-objective programming quantum-behaved par-ticle swarm optimization multi-objective optimization uncertainty
  • 相关文献

参考文献10

二级参考文献79

  • 1叶媛媛,闵春平,沈林成.多UCAV任务分配的混合遗传算法与约束处理[J].控制与决策,2006,21(7):781-786. 被引量:22
  • 2王军,李端.多项式0-1规划中隐枚举算法的改进及应用[J].系统工程理论与实践,2007,27(3):21-27. 被引量:15
  • 3罗德林,王彪,龚华军,吴文海,沈春林.基于SAGA的协同多目标攻击决策[J].哈尔滨工业大学学报,2007,39(7):1154-1158. 被引量:14
  • 4汪定伟,王俊伟,汪洪峰,张瑞友,郭哲.智能优化算法[M].北京:高等教育出版社,2007:26-40. 被引量:42
  • 5Deb K. Multi-objective optimization using evolutionary algorithms[M]. Chichester: Wiley, 2001. 被引量:1
  • 6Sierra M R, Coello C A C. Multi-objective particle swarm optimizers: A survey of the state-of-the-art[J]. Int J of Comoutational Intellizence Research, 2006, 2(3): 287-308. 被引量:1
  • 7Coello C A C, Lechuga M S. MOPSO: A proposal for multiple objective particle swarm optimization[C]. IEEE Congress on Evolutionary Computation. Piscataway: IEEE Press, 2002: 1051-1056. 被引量:1
  • 8Raquel C R, Jr P C N. An effective use of crowding distance in multiobjective particle swarm optimization[C].Proc of the 2005 Workshops on Genetic and Evolutionary Computation. Washington: ACM Press, 2005: 257-264. 被引量:1
  • 9Pulido G T, Coello C A C. Using clustering technique to improve the performance of a multi-objective particle swarm optimizer[J]. Lecture Notes on Computer Science, 2004, 3102: 225-237. 被引量:1
  • 10Lechuga M S, Rowe J. Particle swarm optimization and fitness sharing to solve multi-objective optimization problems[C]. IEEE Congress on Evolutionary Computation. Edinburgh: IEEE Press, 2005:1204-1211. 被引量:1

共引文献118

同被引文献145

引证文献14

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部