期刊文献+

基于混沌免疫谱聚类的软件缺陷预测① 被引量:1

Software defect prediction based on chaotic immune spectral clustering
下载PDF
导出
摘要 为提高无标识软件缺陷预测的准确性,提出一种谱聚类与混沌免疫相结合的软件缺陷预测方法。该方法首先将谱聚类算法引入到软件缺陷预测领域中,然后针对谱聚类算法中K-Means局部收敛的缺点,用一种混沌免疫聚类算法来替换K-Means算法。同时,在免疫克隆选择算法的框架下,借鉴混沌和免疫理论,设计免疫克隆聚类适应度函数计算方法,并给出分层混沌变异算子,以实现种群多样性的增加,促进无标识软件缺陷数据预测精度的提高。在Iris和3组商业软件模块数据集上进行了仿真实验,实验结果验证了该方法的有效性。 To improve the accuracy of defect prediction for unlabeled software data sets, a novel sottware aelect preo^cuo,, method based on the combination of spectral clustering and chaotic immune is presented. The method first intro- duces the Ng-Jordan-Weiss (NJW) algorithm, a spectral clustering algorithm, into the field of software defect pre- diction, and then uses a new chaotic immune clustering algorithm go replace the K-Means algorithm to overcome the K-Means' s problem of easily getting trap local optima in spectral clustering. And under the framework of immune clone selection, it designs a new affinity function for immune clone clustering and gives the layered chaotic mutation operator based on the immune and chaotic theory to diversify the antibodies and improve the accuracy of software defect prediction. Two ease studies are used to validate the method on the Iris and three commercial software data sets. The experimental results illustrate the effectiveness of the proposed method.
出处 《高技术通讯》 CAS CSCD 北大核心 2012年第12期1219-1224,共6页 Chinese High Technology Letters
基金 863计划(2010AA7010213),国家自然科学基金(61179005,61179004)和十一五国防预研(513270104)资助项目.
关键词 无标识数据 免疫 谱聚类 混沌 软件缺陷预测 unlabeled data, immune, spectral clustering, chaos, software defect prediction
  • 相关文献

参考文献21

  • 1王青,伍书剑,李明树.软件缺陷预测技术[J].软件学报,2008,19(7):1565-1580. 被引量:149
  • 2Shull F, Basili V, Boehm B, et al. What we have learned about fighting defects. In: Proceedings of the 8th IEEE Symposium on Software Metrics, Washington D C, USA, 2002. 249-258. 被引量:1
  • 3Gondra I. Applying machine proneness prediction. Journal 2008, 81 (2) :186-195 learning to software fault- of Systems and Software,. 被引量:1
  • 4Menzies T, Greenwald J, Frank A. Data mining static code attributes to learn defect predictors. IEEE Transac- tions on Software Engineering, 2007, 33 ( 1 ) :2-13. 被引量:1
  • 5Andr B C, Aurora P, Silvia R V. A symbolic fault-pre- diction model based on muhiobjective particle swarm opti- mization. Journal of Systems and Software, 2010,83:868- 882. 被引量:1
  • 6Zhong S, Khoshgoftaar T, Seliya N. Unsupervised learn- ing for expert-based software quality estimation. In: Pro- ceeding of the 8th International Symposium on High As- surance Systems Engineering, Washington D C, USA, 2004. 149-155. 被引量:1
  • 7Seliya N, Khoshgoftaar T M. Software quality analysis of unlabeled program modules with semisupervised cluste- ring. IEEE Transactions on Systems, Man, and Cybernet-ics, Part A : Systems and Humans, 2007,37 ( 2 ) : 201- 211. 被引量:1
  • 8Catal C, Sevim U, Diri B. Clustering and Metrics Thresholds based Software Fault Prediction of Unlabeled Program Modules. In : Proceedings of the 6th Internation- al Conference on Information Technology: New Genera- tions, Software Engineering Track, Washington D C, USA, 2009. 199-204. 被引量:1
  • 9Shi J B, Malik J. Normalized cuts and image segmenta- tion. IEEE Trans On Pattern Analysis and Machine Intel- ligence, 2000, 22 (8) : 888-905. 被引量:1
  • 10Ng A Y, Jordan M I, Weiss Y. On spectral clustering: analysis and an algorithm. In: Proceeding of Advance of Neural Information Processing System, Cambridge, USA, 2002. 849-856. 被引量:1

二级参考文献119

共引文献471

同被引文献6

  • 1LITTLEWOOD B,LORENZO S. Software reliability and dependability:a roadmap[A].2000.175-188. 被引量:1
  • 2CATAL C,SEVIM U,DIRI B. Clustering and metrics thresholds based software fault prediction of unlabeled program modules[A].New Generations,2009.199-204. 被引量:1
  • 3BISHNU P,BHATTACHERJEE V. Software fault prediction using quad tree based k means clustering algorithm[J].IEEE Transactions on Knowledge and Data Engineering,2012,(06):1146-1150. 被引量:1
  • 4ARISHOLM E,BRIAND L,JOHANNESSEN E. A systematic and comprehensive investigation of methods to build and evaluate fault prediction models[J].Journal of Systems and Software,2010,(01):2-17.doi:10.1016/j.jss.2009.06.055. 被引量:1
  • 5KORU A,EMAM K,ZHANG D. Theory of relative defect proneness[J].Empirical Software Engineering,2008,(05):473-498.doi:10.1007/s10664-008-9080-x. 被引量:1
  • 6常瑞花,慕晓冬,李琳琳,宋国军.基于模糊聚类非负矩阵分解的软件缺陷预测[J].宇航学报,2011,32(9):2059-2064. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部