期刊文献+

基于无监督聚类混合遗传算法的入侵检测方法 被引量:10

Intrusion detection based on unsupervised clustering and hybrid genetic algorithm
下载PDF
导出
摘要 在利用聚类进行入侵检测的方法中,有效地进行聚类是关键。为了对未标识数据进行聚类,提出了一种新的无监督入侵检测方法。该方法克服了聚类算法中对数据输入顺序敏感和需要预设聚类数目的缺点,减少了所需参数个数。通过初始聚类簇的建立和混合遗传算法对初始聚类进行优化组合两阶段的方法来实现聚类,克服了初始聚类对结果的影响,提高了聚类质量,并进行检测入侵。实验结果表明该方法有较好的检测率和误检率。 Among the methods of intrusion detection with clustering, how to make clustering effectively is a critical problem. A new unsupervised clustering method was proposed in this paper. The method can overcome the shortcoming of sensitivity to the order of input dates and necessity to know the cluster number before it works, and it also can reduce the number of parameters'. By the two stage of creating initial clusters and optimation of the flint stage with hybrid genetic clustering method, it can overcome the influence of initial clusters on results and improve the clustering quality, and then this method was used to detect intrusion. Experimental results demonstrate that this method has better detection rate and false positive rate.
出处 《计算机应用》 CSCD 北大核心 2008年第2期409-411,共3页 journal of Computer Applications
基金 湖南省自然科学基金资助项目(05JJ40133)
关键词 入侵检测 聚类 混合遗传算法 intrusion detection clustering hybrid genetic algorithm
  • 相关文献

参考文献7

二级参考文献35

  • 1刘静,钟伟才,刘芳,焦李成.免疫进化聚类算法[J].电子学报,2001,29(z1):1868-1872. 被引量:43
  • 2刘健庄,谢维信,黄建军,李文化.聚类分析的遗传算法方法[J].电子学报,1995,23(11):81-83. 被引量:27
  • 3Eskin E. Anomaly detection over noisy data using learned probability distributions[C]. In: Proceedings of the Seventeenth International Conference on Machine Learning (ICML-2000),2000,June 29-July 02,255-262. 被引量:1
  • 4Portnoy L, Eskin E, Stolfo S J. Intrusion detection with unlabeled data using clustering[C]. In: Proceedings of ACM CSS Workshop on Data Mining Applied to Security (DMSA-2001).Philadelphia, PA: November 5-8, 2001. 被引量:1
  • 5Eskin E, Arnold A, Prerau M et al. A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data[A]. In:Data Mining for Security Applications[M],Kluwer, 2002. 被引量:1
  • 6Lee W K, Stolfo S J, Mok K W. Mining in a data-flow environment: experience in network intrusion detection[C]. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD-99), August 1999. 被引量:1
  • 7Li Xiang-yang. Clustering and classification algorithm for computer intrusion detection[D]. Arizona State University,2001. 被引量:1
  • 8Charles Elkan. Results of the KDD'99 classifier learning contest[EB/OL]. URL: http://www. cs. ucsd. edu/users/elkan/clresults. html. 被引量:1
  • 9Merz C J, Merphy P. UCI repository of machine learning databases [EB/OL]. URL: http://www. ics. uci. edu/mlearn/MLRRepository. html. 被引量:1
  • 10HanJiawei MichelineKambe.数据挖掘概念与技术[M].北京:机械工业出版社,2001.. 被引量:149

共引文献128

同被引文献70

引证文献10

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部