期刊文献+

李伪代数与其伪模的半直积的伪导子 被引量:1

On the pseudo-derivations of the semi-direct products of Lie pseudoalgebras and their pseudo-modules
原文传递
导出
摘要 本文研究了由李伪代数与其伪模所确定的半直积,从而引出从李伪代数到它的伪模的伪导子的概念,推广了Bakalov等人定义的伪导子的概念,然后刻画了李伪代数与伪模的半直积的伪导子,并给出了有限维复单李代数g的Current李伪代数Curg分别与平凡伪模和非平凡有限维单Curg-模的半直积的伪导子的一些刻画. The notion of pseudo-derivations from a Lie pseudoalgebra to its pseudo-module is introduced as a generalization of pseudo-derivations of Lie pseudoalgebras due to Bakalov et al. Then, it is used to describe pseudo-derivations of the semi-direct product of a Lie pseudoalgebra and its pseudo-module. An explicit description of pseudo-derivations in the dimensional simple Lie algebras is given. case of Current Lie pseudoalgebras determined by finite
作者 郭建苍
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第6期1197-1202,共6页 Journal of Sichuan University(Natural Science Edition)
关键词 李伪代数 伪导子 半直积 伪模 Lie pseudoalgebra, pseudo-derivation, semi-direct product, pseudo-module
  • 相关文献

参考文献16

  • 1Kac V G. Vertex algebras for beginners [M]. 2nd ed. Providence, Rhode Island: AMS, 1998. 被引量:1
  • 2Beilinson A, Drinfeld V. Chiral algebras [M]. Prov- idence, Rhode Island: AMS, 2004. 被引量:1
  • 3Cheng S J,Kac V G. ConIormal modules[J]. Asian J Math, 1997, 1: 181. 被引量:1
  • 4Andrea A D', Kac V G. Structure theory o[ {inite conformal algebras [J]. Sel math New ser 1998, 4 (3) : 377. 被引量:1
  • 5Bakalov B, Andrea A D', Kae V G. Theory of finite pseudoalgebras [J]. Adv Math, 2001, 162: 1. 被引量:1
  • 6Bakalov B, Andrea A. D', Kac V G. Irreducible modules over finite simple Lie pseudoalgebras [, primitive pseudoalgebras of type W and S [J]. Adv Math, 2006, 204(1): 278. 被引量:1
  • 7Bakalov B, Andrea A D', Kac V G. Irreducible modules over finite simple Lie pseudoalgebras lI, primitive pseudoalgebras of type K [EB/OL]. http: //arxiv. org/abs/1003. 6055. 被引量:1
  • 8Bakalov B. An algebraic approach to the operator product expansion[D]. Cambridege: Department of Mathematics, MIT, 2000. 被引量:1
  • 9Retakh A. Unital associative pseudoalgebras and their representations [J] J Algebra, 2004, 277 :769. 被引量:1
  • 10Michael A Sh. Not every pseudoalgrbra is equiva- lent to a strict one[J]. Adv Math, 2012, 229(3): 2024. 被引量:1

二级参考文献15

  • 1徐芒,方颖珏.关于Benkart-Zlemanov相交矩阵李代数[J].四川大学学报(自然科学版),2009,46(6):1620-1622. 被引量:2
  • 2Chevalley C. On groups of automorphisms of Lie groups[J].Proc N A S Mathematics,1944.274. 被引量:1
  • 3Humphreys J E. Introduction to Lie algebras and Representation theory[M].GTM 9.New York:Springer-Verlag,1972. 被引量:1
  • 4Jacobson N. Lie algebras[M].New York:Dover Publications,Inc,1962. 被引量:1
  • 5Onishchik A L,Vinberg E B. Lie groups and Lie algebras Ⅲ[M].Berlin,Heidelberg:Springer-Verlag,1994. 被引量:1
  • 6Weibel C A. An introduction to homological algebra[M].Cambridge:Cambridge University Press,1994. 被引量:1
  • 7Kac V. Infinite dimensional Lie algebras[M].Cambridge:Cambridge University Press,1990. 被引量:1
  • 8Kumar S. A homology vanishing theorem for KacMoody algebras with coefficients in the category O[J].Algebra,1986,(02):444. 被引量:1
  • 9Petit T,Van Oystaeyen F. Note on the generalized derivation tower theorem for Lie algebras[A].New York:Chapman &-Hall/CRC,2006. 被引量:1
  • 10Su Y,Zhu L. Derivation algebras of centerless perfect Lie algebras are complete[J].Algebra,2005,(2):508.doi:10.1016/j.jalgebra.2004.09.033. 被引量:1

共引文献3

同被引文献12

  • 1Filippov V T. n-Lie algebras [J]. Sibirsk Mat zs. 1985.26(6): 126. 被引量:1
  • 2Kasymov S. On a theory of n-Lie algebras[J]. Algebra Logika , 1987. 26(3): 277. 被引量:1
  • 3Ling W. On the structure of n-Lie algebras [D]. Siegn: University-GHS-Siegen , 1993. 被引量:1
  • 4James E. H unmphreys. Introduction to Lie Alegebras and Representation Theory [M].北京:世界图书出版公司,1977. 被引量:1
  • 5Panyushev D. Semi-direct products of Lie algebras and their invariants [J]. Publ RIMS Kyoto Univ, 2007. 43: 1199. 被引量:1
  • 6Richardson R W Jr. On the rigity of semi-direct products of Lie algebras [J]. Pacific J of Mathematics. 1967. 22, 339. 被引量:1
  • 7Weibel C A. An introduction to homological algebra [M]. Cambridge, Cambridge University Press. 1994. 被引量:1
  • 8Saorin M. Automorphism groups of trivial extensions [J]. J Pure and Appl Algebra. 2002.166,285. 被引量:1
  • 9Chevalley C. On groups of automorphisms of Lie groups [J]. Proc N A S. Mathematics. 1944. 30, 274. 被引量:1
  • 10Bai R. Zhang Z. Li H. et ai. The inner derivation algebrasof (n + 1)-demensional n- Lie algebras [J]. Comm Algebra. 2000. 28(6), 2927. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部