期刊文献+

一种新型有限元模型在接触网绞线力学特性分析中的应用

A novel finite element model and its application in mechanical behavior prediction of catenary wire strand
下载PDF
导出
摘要 针对多股捻制绞线力学模型提出一种新型有限元分析方法。采用分段截面轨迹节点扫略和滚动节点梁单元映射实现单股绞线有限元拓扑模型的自动生成;通过建立辅助极坐标系和局部笛卡尔坐标系,基于各向同性材料的弹性理论和绞线边丝与中心丝的几何协调分别建立拉伸和弯曲载荷作用下单股绞线边丝节点、同截面中心丝节点和相邻截面中心丝节点的位移约束方程,并将该方程推广应用至多股绞线结构;结合Timoshenko梁理论和Lagrange乘子法实现绞线结构有限元分析求解。最后,采用该方法对1个捻距长度的双股和单股绞线结构分别进行拉伸和弯曲2种载荷工况下的有限元分析,并与Costello理论计值进行比较。研究结果表明:该有限元分析模型能够精确模拟和预测绞线的力学特性,并为接触网承力索等绞线结构的力学分析提供理论模型和依据。 A new finite element analysis method for multi -layered wire strand was presented. A finite element topological model forsingle layered wire strand was automatic generated by adopting sectional path -node sweep- ing and dynamic node -beam mapping. Based on isotropic material~ elastic theory and the geometrical compati- bility between side wire and central wire, the displacement constraint equation in single wire edge silknode, cen- tral wire node of the same section as well as central wire node of adjacent section, was respectively established under the effect of tension and bending by building auxiliary polar coordinate system and local cartesion system. The equation was also extended and applied to multi -strand wire structure. Coupling with the nodal constraint conditions, finite element solution of wire strand was realized through Lagrange multiplier method and Timoshen- ko beam theory. At last, 1 x 19 wire strand of a pitch length with specific geometrical parameters and constraint equations was modeled and analyzed under predetermined load cases. Futhermore, the result was compared with the theoretical value of Costello. Calculating results show that the suggested finite element model can predict me- chanical behavior of multi - layered wire strand accurately and efficiently, and provide theoretical model and evi- dence for mechanical analysis of multi - layered wire strand such as catenary wire.
作者 周伟 田红旗
出处 《铁道科学与工程学报》 CAS CSCD 北大核心 2012年第6期60-65,共6页 Journal of Railway Science and Engineering
基金 铁道部科技研究开发计划资助项目(2009J007-C)
关键词 绞线 有限元分析 约束方程 几何协调 接触网承力索 wire strand finite element analysis nodal constraint equations geometrical compatibility catenary wire
  • 相关文献

参考文献15

  • 1王作祥.电气化铁道接触网用绞线标准的技术内涵[J].铁道技术监督,2005,33(9):10-12. 被引量:2
  • 2孔庆凯,万鹏.钢绞线的基本力学性能及其有限元方法模拟[J].四川建筑,2003,23(1):20-22. 被引量:13
  • 3Jiang W G, Yao M S, Walton J M. A concise finite element model for simple wire rope strand [ J ]. International Journal of Mechanical Sciences, 1999,41 (2) : 143 -161. 被引量:1
  • 4Jiang W G, , Henshall J L, Walton J M. A concise finite element model for 3 - layered straight wire rope strand [ J ]. International Journal of Mechanical Sciences, 2000, 42(1) : 63 -86. 被引量:1
  • 5Jiang W G, Henshall J L. The analysis of termination effects in wire strand using the finite element method [J~. Journal of Strain Analysis for Engineering Design, 1999,34(1)- 31 -38. 被引量:1
  • 6Jiang W G, Warby M K, Henshall J L. Statically indetermi- nate contacts in axially loaded wire strand [ J ]. European Journal of Mechanics A/Solids, 2008,27( 1 ) : 69 -78. 被引量:1
  • 7Jiang W G. A concise finite element model for pure ben- ding analysis of simple wire strand [ J ]. International Journal of Mechanical Sciences, 2012, 54: 69- 73. 被引量:1
  • 8Costello G A. Theory of wire rope. 2nd ed [ M ]. New York: Springer-Verlag, 1997. 被引量:1
  • 9Ghoreishi S R, Messager T, Cartraud P, Davies P. Va- lidity and limitations of linear analytical models for steel wire strands under axial loading, using a 3D FE model [ J ]. International Journal of Mechanical Sciences, 2007, 49(11) : 1251 - 1261. 被引量:1
  • 10Stanova E, Fedorko G, Fabian M, Kmet S. Computer modelling of wire strands and ropes Part Ⅰ: Theory and computer implementation [ J]. Advances in Engineering Software, 2011 (42) : 322 - 331. 被引量:1

二级参考文献22

  • 1徐有邻,宇秉训,朱龙,赵怀友.钢绞线基本性能与锚固长度的试验研究[J].建筑结构,1996,26(3):34-38. 被引量:37
  • 2郑凯峰 唐继舜 万鹏 孔庆凯.全桥结构非线性仿真分析及拱桥桥面跨塌分析研究.西南交通大学学报,2002,. 被引量:1
  • 3Zhou D. A general solution to vibrations of beams on variable Winkler elastic foundation[J]. Computers & Structures, 1993,47 (1) : 83-90. 被引量:1
  • 4Wang C M,Lam K Y, He X Q. Exact solutions for Timoshenko beams on elastic foundations using Green' s functions[J].Mechanics Based Design of Structures and Machines, 1998,24 : 101-i13. 被引量:1
  • 5Eisenberger M,Clastoinik J. Vibrations and buckling of a beam on a variable Winkler elastic foundation [J]. Journal of Sound Vibration, 1997,115:233-241. 被引量:1
  • 6Lee H P. Dynamic response of a Timoshenko beam on a Winkler foundation subjected to a moving mass[J].Applied Acoustics, 1998,5(3) : 203-215. 被引量:1
  • 7Malekzadeh P,Karami G,Farid M. DQEM for vibration analysis of Timoshenko beams on elastic foundations[J].Computational Mechanics, 2003,31 : 219-228. 被引量:1
  • 8Chen W Q, Lu C F, Bian Z G. A mixed method for bending and free vibration of beams resting on a Pas- ternak elastic foundation[J]. Applied Mathematical Modelling ,2004,28(10) :877-890. 被引量:1
  • 9Girgin C Z,Girgin K. A numerical method for static or dynamic stiffness matrix of non-uniform members resting on variable elastic foundations[J]. Engineering Structure, 2005,27(9) : 1373-1384. 被引量:1
  • 10Malekzadeh P,Karami G. A mixed differential quadrature and finite element free vibration and buckling analysis of thick beams on two-parameter elastic foundations[J ]. Applied Mathematical Modelling, 2008,32(7) : 1381-1394. 被引量:1

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部