期刊文献+

求解非线性规划的Hopfield网络方法 被引量:1

Hopfield neural networks method for solving nonlinear programming problems
下载PDF
导出
摘要 根据求解非线性规划的连续Hopfield网络技术的发展,利用网络模型所依据的最优化方法,对Hopfield神经网络(HNN)模型进行了分类:求解无约束化的HNN和求解约束化的HNN.后者又可分为基于罚函数的HNN和基于Lagrange乘子法的HNN.阐述了神经最优化技术所涉及的前沿问题,并指出今后的发展方向为开发智能优化求解系统. In order to develop neural networks techniques, the history and current research of solving nonlinear programming problems of artificial neural networks techniques are reviewed briefly. Hopfield neural networks (HNN) models can be classified according to different optimization methods of the models. It can classified into HNN of optimization with or without restraining. The latter again is classified into HNN based on penalty function and on Lagrange methods. Advanced problems of 'neural' optimization technique are discussed, and the direction in further research of intelligent optimization systems is pointed out.
出处 《大庆石油学院学报》 CAS 北大核心 2006年第2期90-92,152-153,共3页 Journal of Daqing Petroleum Institute
基金 黑龙江省自然科学基金项目(TF2005-26)
关键词 非线性规划 HOPFIELD神经网络 罚函数法 LAGRANGE乘子法 模拟退火 nonlinear programming Hopfield neural networks penalty methods Lagrange methods simulated annealing
  • 相关文献

参考文献13

  • 1HOPFIELD J J.Neural networks and physical systems with emergent collective computational abilities[A].Proc.Natl.Acad.Sci[C].USA,1982,79:2 554-2 558. 被引量:1
  • 2HOPFIELD J J.Neurons with graded response have collective computational properties like those of two-state neurons[A].Proc.Natl.Acad.Sci[C].USA,1984,81:3 088-3 092. 被引量:1
  • 3HOPFIELD J J,TANK D W.“Neural”computation of decision in optimization problems[J].Biol.Cybern,1985,52:141-154. 被引量:1
  • 4焦李成编著..神经网络计算[M].西安:西安电子科技大学出版社,1993:536.
  • 5姜惠兰,孙雅明.异联想记忆Hopfield神经网络的模型、算法及性能[J].系统工程理论与实践,2005,25(5):101-107. 被引量:9
  • 6TANG Z,JIN H H,MURAO K.A gradient ascent learning for Hopfield networks[J].T.IEICE of Japan,2000,83-A(3):319-331. 被引量:1
  • 7金海和,陈剑,唐政,郑国旗.基于Hopfield网络的极小值问题学习算法[J].清华大学学报(自然科学版),2002,42(6):731-734. 被引量:8
  • 8KENNEDY M P,CHUA L O.Unifying the tank and Hopfield linear programming circuit and the canonical nonlinear programming Circuit of Chua and Lin[J].IEEE Trans on Circuits and Systems,1987,34(2):210-214. 被引量:1
  • 9TANK D W,HOPFIELD J J.Simple“neural” optimization networks:An A/D converter,signal decision circuit,and linear programming circuit[J].IEEE Trans on Circuits and Systems,1986,33(5):533-541. 被引量:1
  • 10KENNEDY M P,CHUA L O.Neural networks for nonlinear programming[J].IEEE Trans on Circuit and Systems,1988,35(5):554-562. 被引量:1

二级参考文献22

  • 1焦李成.神经网络计算[M].西安:电子科技大学出版社,1996.. 被引量:53
  • 2焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1991.12-14. 被引量:62
  • 3[6]Lawler E L, Lenstra J K, Rinnooy A H G, et al. The Travelling Salesman Problem [M]. Chichester: Wiley, 1985. 被引量:1
  • 4[7]Hopfield J J. Neurons with graded response have collective computational properties like those of two-state neurons [J]. Proc of Natl Acad of Sci USA, 1984, 81: 3088-3092. 被引量:1
  • 5[1]Hopfield J J, Tank D W. 'Neural' computation of decision in optimization problems [J]. Biol Cybern, 1985, 52: 141-152. 被引量:1
  • 6[2]Ackley D H, Hinton G E, Sejnowski T J. A learning algorithm for Boltzman Machines [J]. Cognitive Sci, 1985, 9: 147-169. 被引量:1
  • 7[3]Murata J, Fuchikami T, Hirasawa K. Heuristic optimization using long, medium, and short term memories [J]. Trans IEE of Japan, 1998, 118-C (9): 1315-1321. 被引量:1
  • 8[4]Tang Z, Jin H H, Ishizuka O, et al. An investigation on a unique solution of the Hopfield and the T-model neural networks [J]. Trans IEE of Japan, 1998, 118-C (2): 150-160. 被引量:1
  • 9[5]Tang Z, Jin H H, Murao K, et al. A gradient ascent learning for Hopfield networks [J]. Trans IEICE of Japan, 2000, J83-A (3): 319-331. 被引量:1
  • 10杨若黎,顾基发.一种高效的模拟退火全局优化算法[J].系统工程理论与实践,1997,17(5):29-35. 被引量:101

共引文献23

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部