期刊文献+

一种自适应非线性复扩散图像去噪算法 被引量:4

An Adaptive Complex Diffusion Processes for Image Denoising
下载PDF
导出
摘要 本文分析了图像复扩散去噪算法的优缺点,针对复扩散强度参数k与迭代步长Δt在扩散过程中恒定的缺点,提出了一种基于扩散强度参数与迭代步长的自适应复扩散去噪算法。在该扩散过程中,用图像实部的局部梯度控制扩散强度参数大小实现在不同在梯度区域的不同扩散速度,同时对迭代步长随迭代次数增加而逐渐增加,以实现在更短的扩散时间内获得更好的去噪效果。实验结果表明,本文提出的方法在去除噪声的同时更好地保留了图像的细节信息,取得更高的峰值信噪比,所用时间更少。 Through discussion of the characteristics of complex diffusion, a novel adaptive complex diffusion algorithm based on diffusion parameter and iterative step is proposed to overcome the disadvantages that the diffusion parameter k and iterative step At are constant. This new algorithm used the gradient information of image's real part to control the diffusion strength to realize different diffusion velocity in different gradient region, and increased the iterative step with increasing iteration number, so this adaptive complex diffusion can achieve better denoising effect in less diffusion time Numerical experiments results show that this algorithm can remove the noise while preserving more image details and gain higher peak signal noise ratio in a shorter time.
出处 《光电工程》 CAS CSCD 北大核心 2012年第12期91-96,共6页 Opto-Electronic Engineering
基金 四川省教育厅重点项目(10ZA135 10ZB128) 人工智能四川省重点实验室开放基金项目(2012RYY08 2010RY004 2011RZY01)
关键词 复扩散 扩散函数 迭代步长 图像去噪 complex diffusion diffusion function iterative step image denoising
  • 相关文献

参考文献10

  • 1PERONA P, MALIK J. Scale-space and Edge Detection Using Anisotropic Diffusion [J]. IEEE Transactions on Pattern Analysis andMachine Intelligence(S0162-8828), 1990, 12(7): 629-639. 被引量:1
  • 2CATTE P, LIONS P L, MOREL J M, et al. Image Selective Smoothing and Edge Detection by Nonlinear Diffusion [J]. SIAM J(S0363-0129), 1992, 29(1): 182-193. 被引量:1
  • 3SCHERZER O, WEICHERT J. Realations between Regularization and Diffusion Filtering [J]. Math Imaging Vision (S0924-9907), 2000, 12(1): 43-63. 被引量:1
  • 4GILBOA G, SOCHEN N, ZEEVI Y Y. Forward-and-back-ward Diffusion Processes for Adaptive Image Enhancement and Denoising [J]. IEEE Trans. Image Process(S1057-7149), 2002, 11(7): 689-703. 被引量:1
  • 5陈明举,杨平先,王晶.基于正则化与保真项全变分自适应图像去噪模型[J].重庆邮电大学学报(自然科学版),2011,23(5):621-625. 被引量:11
  • 6GILBOA G, ZEEVI Y Y, SOCHEN N A. Complex Diffusion Processes for Image Filtering [EB/OL]. (2010-05-10)[2012-04-20]. http: //webee.technion.ac.il/people/zeevi/papers/Springer/65j-fulltext.pdf. 被引量:1
  • 7GILBOA G SOCHEN N, YEHOSHUA Y. Complex Image Enhancement and Denoising by Complex Ditlhsion Processes [J]. IEEE Transactions on Pattern Analysis and Maehine Intelligenee(S0162-8828), 2004, 26(8): 1020-1035. 被引量:1
  • 8陈明举,杨平先.一种非线性复扩散与冲击滤波的图像消噪方法[J].电视技术,2011,35(19):20-22. 被引量:9
  • 9黄世国,耿国华.一种前后向复扩散图像增强算法[J].小型微型计算机系统,2007,28(3):530-532. 被引量:5
  • 10ARAUJO A, BARBEIRO S, SERRANHO E Stability of Finite Difference Schemes for Complex Diffusion Processes [R] Coimbra: DMUCreport, 2010: 10-23. 被引量:1

二级参考文献37

  • 1张红英,彭启琮.全变分自适应图像去噪模型[J].光电工程,2006,33(3):50-53. 被引量:45
  • 2黄世国,耿国华.一种前后向复扩散图像增强算法[J].小型微型计算机系统,2007,28(3):530-532. 被引量:5
  • 3PERONA P,MALIK J. Scale-space and edge detection using anisotropie diffusion[J]. IEEE Trans. Pat. Anal. Machine Intel. ,1990,12(7): 629-639. 被引量:1
  • 4GILBOA G,SOCHEN N ,ZEEVI Y Y. Forward-and-back-ward diffusion processes for adaptive image enhancement and denoising [ J ]. IEEE Trans. Image Process. ,2002,11 (7) :689-703. 被引量:1
  • 5PERONA P, MALI J. Scale-space and edge detection using anisotropic diffusion[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12 (7) : 629- 639. 被引量:1
  • 6CATTE F, LIONS P L, MOREL J M, et al. Image selective smoothing and edge detection by nonlinear diffusion [J]. SIAM J,1992,29 (1):182-193. 被引量:1
  • 7RUDIN L, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms [ J ]. Physica D, 1992,60(14) :259-268. 被引量:1
  • 8CHANT F, ESEDOGLU S. Aspects of total variation regularized L1 function approximation [ J ]. SIAM Journal on Applied Mathematics ,2005,65 ( 5 ) : 1817-1837. 被引量:1
  • 9BING S. Topics in variational PDE image segmentation, inpainting and denoising[D]. USA:University of California Los Angeles ,2003. 被引量:1
  • 10BLOMGREN P V. Col or TV: Total variation method for restoration of vector2 valued Images [ D ]. Angeles : UCLA, 1998. 被引量:1

共引文献20

同被引文献27

  • 1张旭明,徐滨士,董世运.用于图像处理的自适应中值滤波[J].计算机辅助设计与图形学学报,2005,17(2):295-299. 被引量:159
  • 2张红英,彭启琮.全变分自适应图像去噪模型[J].光电工程,2006,33(3):50-53. 被引量:45
  • 3万洪林,彭玉华,郭锐.基于方向的自适应多级中值滤波[J].通信学报,2006,27(4):119-123. 被引量:19
  • 4熊保平,杜民.基于PDE图像去噪方法[J].计算机应用,2007,27(8):2025-2026. 被引量:11
  • 5Zhaoxia Liu,Boling Guo.New numerical algorithms for the nonlinear diffusion model of image denoising and segmentation[J]. Applied Mathematics and Computation . 2005 (2) 被引量:1
  • 6Joachim Weickert.Coherence-Enhancing Diffusion Filtering[J]. International Journal of Computer Vision . 1999 (2-3) 被引量:1
  • 7RUDIN L, ()SHER S. FATEMI K. Nonlinear total variation based noise removal algorithms [J]. Physica D : N<m-linear Phetio/>ie)ia . 1992. 60(14) : 259-268. 被引量:1
  • 8Cl IAMBOLLK A. An algorithm for total variation minimization and applications [J]. Jourtml of Mathematical I/n-aging and Vision . 2004, 20(2) : 89-97. 被引量:1
  • 9BECK A, TEBOULLE M. Fast gradient-based algorithms for constrained total variation image denoising and de-blurring problems [J]. IEEE Transactions on Image Processing,2009,18(11) : 2419-2434. 被引量:1
  • 10LYSAKER M,LUNDERVOLD A, TAI X C. Noise removal using fourth-order partial differential equation withapplications to medical magnetic resonance images in space and time [J]. IEEE Transactions on Image Processing,2003, 12(12): 1579-1590. 被引量:1

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部